NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment

NVIDIA and Google Cloud are collaborating to bring secure, on-premises agentic AI to enterprises by integrating Google’s Gemini models with NVIDIA’s Blackwell platforms. Leveraging confidential computing and enhanced infrastructure like the GKE Inference Gateway and Triton Inference Server, the partnership ensures scalable AI deployment without compromising regulatory compliance or data sovereignty.
NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment
Image Credit: NVIDIA and Google Cloud

NVIDIA and Google Cloud are joining forces to enhance enterprise AI applications by integrating Google Gemini AI models with NVIDIA‘s advanced computing platforms. This collaboration aims to facilitate the deployment of agentic AI locally while ensuring strict compliance with data privacy and regulatory standards.

Enhanced Data Security with NVIDIA and Google Cloud


The partnership centers on the use of NVIDIAs Blackwell HGX and DGX platforms, which are now integrated with Google Clouds distributed infrastructure. This setup allows enterprises to operate Googles powerful Gemini AI models directly within their data centers. A key feature of this integration is NVIDIA Confidential Computing, which provides an additional layer of security by safeguarding sensitive code in the Gemini models against unauthorized access and potential data breaches.

Sachin Gupta, Vice President and General Manager of Infrastructure and Solutions at Google Cloud, emphasized the security and operational benefits of this collaboration. “By deploying our Gemini models on-premises with NVIDIA Blackwells exceptional performance and confidential computing capabilities, were enabling enterprises to leverage the full capabilities of agentic AI in a secure and efficient manner,” Gupta stated.

The Advent of Agentic AI in Enterprise Technology

Agentic AI represents a significant evolution in artificial intelligence technology, offering enhanced problem-solving capabilities over traditional AI models. Unlike conventional AI, which operates based on pre-learned information, agentic AI can reason, adapt, and make autonomous decisions in dynamic settings. For instance, in IT support, an agentic AI system can not only retrieve troubleshooting guides but also diagnose and resolve issues autonomously, escalating complex problems as needed.

In the financial sector, while traditional AI might identify potential fraud based on existing patterns, agentic AI goes a step further by proactively investigating anomalies and taking preemptive actions, such as blocking suspicious transactions or dynamically adjusting fraud detection mechanisms.

Addressing On-Premises Deployment Challenges

The ability to deploy agentic AI models on-premises addresses a critical need for organizations with stringent security or data sovereignty requirements. Until now, these organizations have faced significant challenges in utilizing advanced AI models, which often require integration of diverse data types such as text, images, and code, while still adhering to strict regulatory standards.

With Google Cloud now offering one of the first cloud services that enables confidential computing for agentic AI workloads in any environment, be it cloud, on-premises, or hybrid enterprises, no longer have to compromise between advanced AI capabilities and compliance with security regulations.

Future-Proofing AI Deployments

To further support the deployment of AI, Google Cloud has introduced the GKE Inference Gateway. This new service is designed to optimize AI inference workloads, featuring advanced routing, scalability, and integration with NVIDIA’s Triton Inference Server and NeMo Guardrails. It ensures efficient load balancing, enhanced performance, reduced operational costs, and centralized model security and governance.

Looking forward, Google Cloud plans to improve observability for agentic AI workloads by incorporating NVIDIA Dynamo, an open-source library designed to scale reasoning AI models efficiently across various deployment environments.

These advancements in AI deployment and management were highlighted at the Google Cloud Next conference, where NVIDIA held a special address and provided insights through sessions, demonstrations, and expert discussions.

Through this strategic collaboration, NVIDIA and Google Cloud are setting a new standard for secure, efficient, and scalable agentic AI applications, enabling enterprises to harness the full potential of AI while adhering to necessary security and compliance requirements.


Recent Content

The West is falling behind fast. China constructs in days what takes the West years. Russia develops weapons we have no answer for. And the West’s defense programs? Drowning in redtape and billion-dollar overruns. But there is hope. AI can cut through bureaucracy, slash through development times, and help reclaim a technological edge. The future of Western aerospace isn’t inevitable, it’s optional.
The US Department of Defense has transitioned 5G Open RAN from prototype to full operational deployment, enhancing military logistics, automation, and cybersecurity. With industry partners like JMA Wireless and Federated Wireless, the DoD is leveraging 5G for mission-critical operations. This article explores how 5G Open RAN improves operational resilience, workforce efficiency, and future military applications, including spectrum management and AI-driven network optimization.
The telecom industry is in the midst of a major shift from “telco” to “techco”, with operators investing in AI, 5G, cloud computing, and digital services to compete with tech giants like Amazon and Google. At MWC 2025, leaders from e&, KDDI, MTN, and SK Telecom discussed their AI-driven strategies, including self-healing networks, smart city infrastructure, fintech expansion, and enterprise 5G solutions. As telcos embrace AI-powered automation and cloud-based innovations, they are redefining their role in the digital economy.
Ericsson, Volvo Group, and Airtel have joined forces to explore how 5G Advanced, Digital Twin technology, and Extended Reality (XR) can transform manufacturing in India. The research, conducted at Volvo’s R&D Centre in Bangalore, will focus on smart factories, immersive training, and real-time process optimization. With Airtel’s low-latency 5G network, the collaboration aims to enhance industrial automation, workforce training, and AI-driven efficiencies, setting a benchmark for Industry 4.0 and Industry 5.0 innovations.
The Department of Telecommunications (DoT) has announced the 5G Innovation Hackathon 2025, a six-month competition to drive 5G-powered solutions across industries. Open to students, startups, and professionals, the hackathon will focus on AI, IoT, smart cities, and next-gen connectivity innovations. Participants will receive funding, mentorship, and access to 100+ 5G Use Case Labs. Winners will showcase their solutions at India Mobile Congress 2025.
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality. Discover key insights, real-world case studies, and strategic actions for telecom leaders. Download the Full Report Now to stay ahead in AI-powered service assurance.

Download Magazine

With Subscription
Whitepaper
Download the 5G Assurance Operator Survey conducted on behalf of RADCOM by TeckNexus. Get the viewpoint from the 5G operators' operational team....
Radcom Logo

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top