Nokia and O2 Telefónica Germany achieve breakthrough with 5G 2CC Uplink Carrier Aggregation in a commercial network

Nokia and O2 Telefónica Germany announced that they have successfully aggregated sub-6 GHz spectrum frequencies in an industry-first two-component carrier uplink Carrier Aggregation (CA) trial on 5G Standalone.
Nokia and O2 Telefónica Germany achieve breakthrough with 5G 2CC Uplink Carrier Aggregation in a commercial network
Image Credit: Nokia

 Nokia and O2 Telefónica Germany achieve a breakthrough with 5G 2CC Uplink Carrier Aggregation in a commercial network    

  • Industry-first milestone achieved on O2 Telefónica’s live 5G network with Nokia’s commercial 5G AirScale portfolio and MediaTek’s mobile platform
  • Faster uplink speeds in Carrier Aggregation will support the metaverse era
  • Nokia is an industry leader in Carrier Aggregation

Nokia and O2 Telefónica Germany announced that they have successfully aggregated sub-6 GHz spectrum frequencies in an industry-first two-component carrier uplink Carrier Aggregation (CA) trial on 5G Standalone. Nokia has previously demonstrated four component carrier downlink 5G Carrier Aggregation, as well as uplink Carrier Aggregation on the millimeter wave spectrum. Together with O2 Telefónica Germany, Nokia is the first to combine sub-6 GHz spectrum to boost uplink throughput.

CA enables mobile operators to maximize their spectrum assets to reach higher throughputs and enhance the 5G experience for subscribers. As users create and share content online such as HD video, Carrier Aggregation will improve the performance of 5G by delivering improved UL network usability at the cell edge with higher reliability and lower latency. Mobile operators will be able to enable new industrial use cases for verticals such as the automotive industry and live broadcasts of events and virtual reality experiences for consumers and enterprises, paving the way for the metaverse.

The proof-of-concept took place at O2 Telefónica’s Innovation Cluster near Berlin and utilized O2 Telefónica’s live commercial network. Nokia provided solutions from its latest energy-efficient AirScale portfolio including Baseband, massive MIMO, and RRH products, powered by its Reefshark chipset. MediaTek provided its 5G mobile platform using the MediaTek Release-16 M80 modem integrated into the MediaTek Dimensity 9000 flagship chipset. The companies used the combination of a 20 MHz carrier on the 1800 MHz band (n3) and a 70 MHz carrier on the 3.6 GHz band (n78) using Carrier Aggregation technology to achieve a peak throughput of 144 Mbps.

Cells on a lower frequency in Frequency Division Duplex (FDD) mode provide wide coverage. They are complemented by cells on higher frequencies typically in Time Division Duplex (TDD), which feature higher bandwidth and capacity, but lower coverage range. Uplink Carrier Aggregation of FDD and TDD combines frequencies to provide higher data rates and increased coverage, especially at the TDD cell edge and indoors. This combination can greatly reduce the cost of network construction while improving network coverage and the user experience as well as helping ensure low latency.

JS Pan, General Manager, Wireless Communication Technology at MediaTek, said: “The combination of spectrum frequencies utilizing Carrier Aggregation delivers premium coverage and capacity to mobile subscribers where it is needed. Our new 5G mobile platforms utilizing the M80 modem are fundamental to delivering this achievement and we look forward to continuing to support our industry partners to push new boundaries in the development of 5G.”

Mallik Rao, Chief Technology & Information Officer at O2 Telefónica, commented: “We want to offer our customers an optimal 5G experience in their everyday digital lives. We are continuously working on technological innovations that will make our O2 network of the future more powerful. With frequency bundling, we will enable our customers to enjoy faster downloads and uploads in our 5G network in the future. Together with our long-time partner Nokia, we have succeeded in taking this step also for uploads in the 5G standalone network. Carrier aggregation will take our 5G network to the next level and improve the network experience.” 

Mark Atkinson, SVP, Radio Access Networks at Nokia, commented: “This successful Carrier Aggregation uplink trial on sub-6 GHz spectrum is yet another example of Nokia’s innovation and technology leadership and the continuation of our fruitful partnership with O2 Telefónica. While many 5G services require high downlink data rates, increasing sub-6 GHz uplink speeds is an important precondition for advanced 5G use cases. Carrier Aggregation software complements our high-performance AirScale portfolio, placing Nokia at the forefront of providing technologies that support mobile operators in maximizing radio network efficiencies.”

The post Nokia and O2 Telefónica Germany achieve breakthrough with 5G 2CC Uplink Carrier Aggregation in a commercial network appeared first on Nokia media release.


Recent Content

Connectivity convergence is redefining the Internet of Things by integrating legacy systems, cellular, Wi-Fi, LoRaWAN, BLE, and satellite networks. From agriculture to logistics, IoT ecosystems are evolving to prioritize seamless communication, modular hardware, and intelligent data handling with edge AI. This article explores how convergence is shifting the focus from hype to practical, scalable deployment—unlocking the true potential of IoT everywhere.
This articles explores how AI, quantum computing, and next-gen connectivity are shaping the future of innovation. From ethical AI and quantum-safe cryptography to 6G-enabled access to education and healthcare, these converging technologies are redefining what’s possible across industries. The key: inclusive, sustainable, and collaborative development.
With AI shifting from the cloud to the device, on-device AI is transforming privacy, speed, and user experience. Experts from Honor, Broadcom, and Orange explore the challenges and innovations shaping this future, from AI chips to offline capabilities and ethical implications. Is it time to go all-in?
Telecom Communication Service Providers (CSPs) are embracing a digital-first strategy to remain competitive in a rapidly evolving industry. This article outlines how CSPs are integrating AI for operational efficiency, shifting towards personalized customer experiences, building scalable monetization strategies, and overcoming legacy challenges to drive long-term digital transformation and enterprise value.
Telecom giants play a critical role in SMEs’ digital transformation, yet a gap remains in access to broadband, cloud, and 5G technologies. While large enterprises receive priority, SMEs often struggle with affordability and digital adoption. This article explores how telecom providers can bridge the digital divide by offering tailored solutions, strategic partnerships, and flexible pricing models to support SME growth.
Nvidia GTC 2025 introduced AI advancements, including Blackwell Ultra AI chips, agentic AI, and AI Factories. With innovations in robotics, generative AI, and AI-driven cloud computing, Nvidia is shaping the future of AI-powered industries. Discover how these technologies are transforming healthcare, finance, automotive, and enterprise applications.

Download Magazine

With Subscription
Whitepaper
Explore the Private Network Edition of 5G Magazine, your guide to the latest in private 5G/LTE and CBRS networks. This edition spotlights 11 award categories including private 5G/LTE leader, neutral host leader, and rising startups. It features insights from industry leaders like Jason Wallin of John Deere and an analysis...
Whitepaper
Discover the potential of mobile networks in modern warfare through our extensive whitepaper. Dive into its strategic significance, understand its security risks, and gain insights on optimizing mobile networks in critical situations. An essential guide for defense planners and cybersecurity enthusiasts....

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top