DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

The world's first demonstration of an automated driving application supported by 5G Standalone network slicing with controlled network features for QoS (Quality of Service) was announced by Deutsche Telekom, BMW Group, Valeo, Qualcomm, and Ericsson. The partners looked into how 5G SA network slicing with various QoS features can provide successful automotive use case scenarios.
DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

The world’s first demonstration of an automated driving application supported by 5G Standalone network slicing with controlled network features for QoS (Quality of Service) was announced today by Deutsche Telekom, BMW Group, Valeo, Qualcomm, and Ericsson.

The partners looked into how 5G SA network slicing with various QoS features can provide successful automotive use case scenarios. For example, without a reliable network connection, many upcoming automotive uses wouldn’t be possible.

5G SA’s key feature is network slicing. This means that different areas of the network can be allocated for specific uses, depending on things like required quality of service (QoS), performance, security, or latency. In addition, the User Equipment Route Selection Policy (URSP) feature allows devices to connect to multiple slices simultaneously based on what they need.

Furthermore, a Network API was utilized to request a QoS level from the network. This capability is called Quality on Demand (QoD), and it allows for different levels of quality based on the needs of various applications. The tests showed that, under various network load situations, how these features were able to meet the QoS demands of mission-critical applications successfully.

Nicolai Martin, SVP of BMW Group Driving Experience, says: “The BMW Group sees the activities in the telecommunications industry with 5G as a central enabler for many innovative automotive features and also for Automated Valet Parking. For such a new solution, several industries must work closely together to offer the customer a valuable benefit. The aim is to build a standardized and interoperable AVP ecosystem. The BMW Group welcomes activities in the telecommunications industry, especially the CAMARA project. This is an important enabler for future services.”

Claudia Nemat, Board member of Technology and Innovation Deutsche Telekom, says: “Deutsche Telekom is excited to be part of this activity to demonstrate the capabilities of advanced network features like 5G network slicing with integrated APIs to meet the Quality of Service demands of automotive use cases. Close cross-industry collaboration is essential to co-innovate and develop new solutions that benefit customers. This is an enabler for future services.” 

Eric Ekudden, Group CTO, Senior Vice President, and Head of Technology & Strategy at Ericsson, says: “Ericsson has provided the End-to-End Network for a successful Proof of Concept. We continue to support the realization of Use Cases using network slicing and exposure capability to monetize 5G network investment for Communication Service Providers (CSP).”

Enrico Salvatori, SVP & President Qualcomm Europe/MEA, Qualcomm Europe, Inc., says: “We are proud to be part of this project, utilizing Qualcomm Technologies’ long-established expertise in 5G and wireless innovation to help enable advanced features like 5G network slicing for reliable interoperability and improved quality-of-service. We look forward to continuing collaborating with partners across the automotive ecosystem to usher in the next generation of autonomous driving applications.”

Marc Vrecko, Business Group President Valeo Comfort & Driving Assistance Systems, says: “Communication between infrastructure and vehicles is a safety-critical element. Automated Valet Parking, developed in cooperation with BMW Group and tested with Deutsche Telekom, relies in part on Valeo software and systems both embedded in the car and installed in the parking infrastructure itself. Testing 5G interfaces jointly with Deutsche Telekom convinced us of the performance of cellular networks. To make mobility safer and smarter, Valeo has integrated advanced driver assistance systems (ADAS) into one of the main focuses of its innovations.”

Network APIs and Network Slicing

In February 2022, Deutsche Telekom announced that, in cooperation with the BMW Group and Valeo, they had completed initial tests for Quality of Service using the Quality on Demand feature as a network API. The application programming interface was tested with Automated Valet Parking (AVP), and the results were presented at Mobile World Congress (MWC) 2022.

While the CAMARA initiative was announced by GSMA, Quality on Demand was the first network API to be standardized under this global initiative. The Quality on Demand standard allows for a better quality of service between networks, technology vendors, cloud providers, operating system developers, and application creators.

Automated Driving Trial with Partners

There are an increasing number of automotive applications that require a dependable mobile network connection. A few examples of these use cases are safety features, remote control functions (like opening/closing doors remotely), and assisted or automated driving features.

The partners sought to learn if and how they could provide QoS features in future network deployments. To do so, they ran tests at Deutsche Telekom testing facilities in Berlin Winterfeldtstraße. The test environment relied on cutting-edge Ericsson 5G SA technologies, including QoS support based on network slicing features and network APIs.

This trial saw BMW Group and Valeo provide mission-critical use cases for automated driving using the “Snapdragon Auto 5G Modem-RF” from Qualcomm Technologies, Inc. This enabled testing of the network slicing features to support interoperability. Deutsche Telekom, BMW Group, Valeo, and Ericsson all collaborated on designing the trial setup and related test cases.

Testing Network API, Network Slicing, and URSP features

The tests performed indicated that QoS features are extremely valuable about achievable bandwidth, stability, and latency. The partners showed how 5G SA network slicing allows for an automotive use case scenario that is supported by application-grade connectivity. This is enabled by three key QoS features in the operator network:

Network API – The trial demonstrates how, even in congested network situations, a mission-critical application can request and receive the improved network performance it needs to function properly by utilizing Quality on Demand (QoD) API in an enhanced mobile broadband (eMBB) slice.

Network Slicing – In the mission-critical scenario, data was transmitted via a high-quality slice, while in a non-mission-critical scenario, the data was transmitted via an eMBB slice. The trial’s measurement results revealed that, even in congested conditions where many users are simultaneously sharing mobile network resources, the automated driving function was always served with the necessary bandwidth.

UE Route Selection Policy – URSP was utilized to select network slices on the device side corresponding with available network slice options on the network end. From different applications, application traffic can be processed by numerous slices working in tandem, as demonstrated by our findings. For example, one high-priority application’s traffic would use a high-quality slice, while noncritical app traffic uses an eMBB slice.

Additional News

Ericsson and Telia collaborate to establish the first-ever enterprise 5G private network in the Baltic region, a move set to spur the area’s digital transformation. This development in Estonia will enhance business operations, drive innovation, and streamline the introduction of new products. The partnership aims to showcase the vast potential and benefits of 5G technology in improving business operations and accelerating the adoption of Industry 4.0.
T-Mobile has partnered with Prisms of Reality (Prisms VR) to link virtual reality (VR) headsets effortlessly to 5G network, providing students and educators nationwide with engaging math and science lessons aimed at bridging the STEM opportunity gap. This collaboration is designed to benefit anyone interested in equipping students with innovative learning opportunities.
TERAGO has established Canada’s premier 5G MMwave private network for Industry 4.0 research at McMaster University’s new Manufacturing Research Institute (MMRI) in Hamilton, Ontario. Over the next three years, this network will enable researchers to test and develop advanced manufacturing technologies utilizing 5G MMwave capabilities.
In partnership with Ericsson and Saab, Purdue University Airport has unveiled a one-of-a-kind 5G network designed to function as a “lab to life” testing ground. This platform will enable academics, researchers, and businesses to create scalable commercial solutions aimed at enhancing operations and security for airports of varying sizes.
German chemical firm BASF plans to establish a private 5G network at a facility in Belgium’s Port of Antwerp, partnering with local networking expert Citymesh. This development, which follows a series of cellular-connected Industry 4.0 trials in the region, has been dubbed “the first private 5G network” in the port by local media.
Schneider Electric, Capgemini, and Qualcomm Technologies have announced their collaboration on a first-of-its-kind 5G-enabled automated hoisting solution. The three companies have joined efforts on the design and installation of the solution at Schneider Electric’s hoisting lab in Grenoble, France. Replacing wired connections with wireless and unifying existing wireless connections from Schneider Electric’s industrial automation system, the 5G Private Network solution demonstrates how it can simplify and optimize digital technology deployment at scale across industrial sites — from steel plants to ports.
DT’s new offer has standardized 5G campus network solutions. The end-to-end solution is based on Microsoft Azure’s private MEC platform, featuring an edge platform and networking capabilities that will allow your business to utilize modern connected applications. This concept was specifically designed with small and medium businesses in mind, as well as those who already have an established landscape of Azure products at their disposal.
Verizon Business and KPMG LLP have collaborated as part of their alliance relationship to deliver 5G solutions designed to help transform the healthcare and life sciences sectors. KPMG has now deployed Verizon’s Private 5G wireless network into its Ignition Center inside KPMG Lakehouse to further that collaboration. Building on top of this next-generation network, KPMG is creating a Healthcare Lab experience where clients can interact and experiment with the latest in healthcare technologies while helping to define their own future healthcare vision powered by Verizon 5G.
This project entails communication between multiple drones in mid-air and various interconnected urban elements for the successful delivery of a package to its designated mobile collection point. It combines multiple technologies – including 5G, C-V2X communications (the same technology employed in modern connected cars), RTK technology, and mobile location. This proposal, a part of Telefónica’s 5G Madrid project, has been made possible by the Ministry of Economic Affairs and Digital Transformation through Red.es with co-financing from FEDER funds under the established call for 5G grants. To ensure the success of this project, Telefónica has partnered with Correos as their use case recipient and also teamed up with Gradiant, Ericsson, and Genasys.
Scroll to Top