
What is Open RAN? | Open RAN Taxonomy
What is Radio Access Network (RAN)? What is Open RAN? What is OpenRAN? What is O-RAN? What is Virtual RAN (vRAN)?, What is Cloud RAN?
In planned editions of 5G Magazines
In simple terms, Open RAN is an industrial concept that includes; virtualization, automation, and RAN internal open interfaces. Disaggregation and automation of RAN can be achieved in a number of different ways, including by solutions offered by traditional vendors. In this sense, Open RAN can be realized by 3GPP and O-RAN alliance specifications or proprietary non-standard-based solutions.
O-RAN Alliance, in addition to what 3GPP enables, also specifies open RAN internal interfaces between the main building blocks of the radio access networks – Radio Unit (RU), Distributed Unit (DU), and Centralized Unit (CU). This would enable a mix and match between RAN components from different vendors. It is also essential to consider that since RAN is only one part of the mobile network, 3GPP is the only available specification that standardizes end-to-end a fully functional mobile network (2G/3G/4G/5G) that is interoperable and multi-vendor interoperable. O-RAN alliance specifications are only focused on RAN and currently only cover 5G.
The three main building blocks of the RAN are:
O-RAN alliance specifications that build on top of 3GPP RAN specification add additional functions and open RAN internal interfaces. If based on a specification like the O-RAN alliance, these functions and interfaces can potentially ensure multi-vendor interoperability and hence allow network operators to mix and match RAN internal components.
To achieve multi-vendor interoperability, individual vendors that offer products compliant with O-RAN alliance specifications must perform interoperability tests between different vendors’ solutions (and future software updates) that may or may not be built on proprietary vendor implementations. Mobile network operators can have integrated RAN products in one portion of the network and O-RAN compliant RAN products in another geographical part of the network.
Additionally, the disaggregated hardware and software RAN components enable the network operator to upgrade software functionality without ripping out & replacing the underlying physical infrastructure, i.e., future-proof their 5G hardware infrastructure investments.
However, since RAN disaggregation is possible in several ways, this possibility can be realized based on 3GPP, O-RAN Alliance, or proprietary solutions. In other words, if this the objective OpenRAN as defined by O-RAN alliance specifications is not the only avenue to achieve this outcome and presence of RAN internal interfaces is not a necessary condition to achieve benefits associated with virtualization and automation of RAN.
The radio access network (RAN) is one of the domains in a mobile network that is part of the mobile ecosystem. RAN connects end-user devices to the mobile network over the radio waves. RAN consists of a number of functional parts that are implemented through hardware and software components. RAN makes up one of the more significant expenditures of the mobile network, while from an end-user perspective, RAN makes up between 3-4% of wireless revenues (sum of end-users spending on mobile services).
Large network equipment vendors traditionally sell RAN as integrated solutions where the radio, hardware, and software components are tightly integrated, and the RAN internal interfaces are proprietary (not open). 3GPP today allows operators to mix and match different RAN suppliers across different geographical areas but does not allow an operator to use different suppliers of discrete RAN components on a single cell site installation. To swap out a RAN supplier of integrated solutions or of proprietary OpenRAN solution is resource-demanding for a mobile network operator. The economic trade-off: performance of integrated solutions versus flexibility of multi-vendor interoperable OpenRAN solutions is a choice that mobile network operators face.
Due to the integrated nature of the traditional RAN equipment and interfaces’, or proprietary OpenRAN solutions, the network operators cannot mix and match RAN subcomponents from different vendors, this does not preclude an operator to mix and match different vendors across different geographical footprints as most operators today have several RAN vendors in addition to where OpenRAN is being introduced in regional test deployments. Multiple industry forums are working to overcome the limitation to enable interoperability between multi-vendor RAN components while at the same time match the performance of integrated RAN solutions.
Radio access network functions designed and implemented as virtual network functions (VNFs) are termed as virtual RAN (vRAN).
In the vRAN solution
To summarize, vRAN offers the benefits of Open RAN associated with virtualization and automation but is still implemented on proprietary hardware and proprietary interfaces and does not allow for mix and match of RAN hardware and software.
Cloud RAN is a virtualized radio access network (vRAN) based on cloud-native architecture. Cloud RAN architecture supports cloud-native characteristics such as containerization, microservices, and CI/CD (continuous integration/continuous deployment). This means that on top of vRAN, Cloud RAN also allows for the implementation of vendor-specific software on general-purpose hardware. In this sense, it offers one avenue to mix and match suppliers in parts of the RAN hardware and software. Open RAN benefits associated with virtualization and automation can be realized without the introduction of an open RAN internal interfaces.
O-RAN ((Open Radio Access Network) refers to the O-RAN alliance and the specifications defined by the O-RAN alliance. O-RAN alliance is defining specifications to make radio access networks open, intelligent, virtualized, and fully interoperable. O-RAN alliance’s unique contribution compared to the examples above is to add the mix and match possibility of vendors of discrete RAN components.
AT&T, China Mobile, Deutsche Telekom, NTT DOCOMO, and Orange founded the O-RAN alliance in 2018. It currently has participation from 20+ global mobile operators and 200+ companies (vendors and research and institutions) operating in the radio access network industry.
It is taking 3GPP specifications as a base and extending the specifications in the RAN domain. O-RAN Alliance focusses on the below three streams:
OpenRAN refers to the initiatives driven by the Telecom Infra Project’s (TIP’s) OpenRAN project group.
OpenRAN is accelerating innovation and commercialization in the RAN domain with multi-vendor interoperable products and solutions that are easy to integrate into the operator’s network and are verified for different deployment scenarios. TIP’s OpenRAN program drives the development of disaggregated and interoperable 2G, 3G, 4G, and 5G NR (RAN) solutions based on service provider requirements. It has brought together operators, traditional and emerging vendors leveraging open-source approaches and technologies.
The RAN Intelligent Controller is a cloud-native central component of an open and virtualized RAN network. In an O-RAN architecture, it enables interoperability across different hardware (O-RU, servers) and software (O-DU/O-CU) components. Thereby, helps operators to optimize and launch new services by allowing them to make the most of network resources. It also helps operators to ease network congestion.
The RIC aligns with 3GPP release 15 and beyond and supports network slicing, eMBMS, MCx, etc. In addition, it features a standardized interface – called the E2 – from the O-CU and O-DU to the RIC. Along that interface, the RIC receives measurements from the RAN about the network’s performance.
It then makes intelligent decisions to improve things like subscriber positioning, handover to a cell, and changing to a different frequency. It adapts any variables to optimize the subscriber experience and network performance.
The key expectations of the Open RAN, presuming a multi-vendor interoperable implementation for the mobile operators, include:
Private 5G/LTE deployments will benefit from Open RAN. One of the main challenges to the wider adoption of licensed wireless networks is cost, and open RAN may make the difference. The market for private 5G/LTE is anticipated to experience a significant boost over the next five years, according to industry estimates.
Some of the challenges that operators face in deploying Open RAN solutions include:
The main organizations driving the evolution of Open RAN include O-RAN Alliance, O-RAN OSC (Linux Foundation), ONF (SD-RAN project), and Telecom Infra Project (TIP).
O-RAN Alliance focuses on use cases, open RAN architecture, open interfaces, and specifications including testing and integration, while O-RAN OSC and the ONF SD-RAN project provide a software base for some of the components such as RIC. O-RAN ALLIANCE members and contributors have committed to evolving radio access networks around the world. Future RANs will be built on a foundation of virtualized network elements, white-box hardware, and standardized interfaces that fully embrace O-RAN’s core principles of intelligence and openness.
Meanwhile, TIP plays a crucial role in aligning the use cases, deployment requirements, vendors and operators so that first, tests can be conducted in labs and field networks, and subsequently, for the acceleration of commercial deployments. Within TIP, the OpenRAN Project Group defines and builds RAN solutions for 2G,3G, 4G, and 5G RAN networks based on general-purpose vendor-neutral hardware, open interfaces & software. The OpenRAN MoU Group was formed by TIP participants DT, Vodafone, Telefonica, Orange, and TIM, who are working to define and develop OpenRAN solutions that can bring the connectivity that the world needs today, and in decades to come. Link to download the whitepaper “BUILDING AN OPEN RAN ECOSYSTEM FOR EUROPE for Europe to lead in this essential innovation” by Deutsche Telekom, Orange, Telecom Italia (TIM), Telefónica, Vodafone, Nov 2021
3GPP was created in December 1998 by signing the “The 3rd Generation Partnership Project Agreement“. The original 3GPP (1998) scope was to produce Technical Specifications and Technical Reports for a 3G Mobile System based on evolved GSM core networks and the radio access technologies they support. The latest 3GPP Scope and Objectives document has evolved from this original Agreement.
The 3rd Generation Partnership Project (3GPP) unites below telecommunications standard development organizations known as “Organizational Partners.”
It provides its members with a stable environment to produce the Reports and Specifications that define 3GPP technologies.
The project covers cellular telecommunications technologies, including radio access, core network, and service capabilities, which provide a complete system description for mobile telecommunications.
The 3GPP specifications also provide hooks for non-radio access to the core network and interworking with non-3GPP networks.
3GPP specifications and studies are contribution-driven by member companies, working groups, and the Technical Specification Group level.
The three Technical Specification Groups (TSG) in 3GPP are:
3GPP Technical Specification Group RAN, like other TSGs, ensures that systems based on 3GPP specifications are capable of rapid development and deployment with the provision of global roaming of equipment. Each progressive 3GPP radio access technology aims to reduce complexity and avoid fragmentation of technologies on offer.
3GPP has aligned the industry on the New Radio (NR) and on LTE-Advanced Pro to provide 5G from 3GPP Release 15 onwards.
Image Source: 3GPP – The Mobile Broadband Standard (click image to enlarge)
The Open RAN Policy Coalition has been formed to promote policies that would advance further adoption of the open and interoperable solutions in the Radio Access Network (RAN), but this entity does not contribute to any standard or specification work.
Please see the 5G Magazine, Open RAN edition for more details. Also, visit Open RAN latest deployments/trials.
Open RAN Asia-Pacific
Americas
Europe
Middle-East and Africa
Please see the 5G Magazine, 5G Magazine Jan edition for Open RAN state as of Dec 2021. See 5G Magazine, Open RAN edition for comprehensive details on Open RAN. Get the latest news on Open RAN here.
Jan 26, 2022
BT announced details of a trial in Hull, UK, showcasing the company’s continued dedication to the advancement and implementation of Open RAN technology. The Nokia RAN Intelligent Controller (RIC) for Open RAN will be installed across a number of sites by BT to optimize network performance for customers of EE’s mobile network. Link to BT’s press release: here
Jan 21, 2022
Vodafone has switched on the UK’s first 5G Open RAN site in Bath, Somerset. The new site is the first of 2,500 planned and marks the beginning of the first scaled Open RAN project in Europe.
In Jun 2021, Vodafone had unveiled its strategic vendors – Dell, NEC, Samsung Electronics, Wind River, Capgemini Engineering, and Keysight Technologies – to jointly deliver the first commercial deployment of Open Radio Access Network (RAN) in Europe. Vodafone’s initial focus will be on the 2,500 sites in the UK that it has committed to Open RAN in October 2020. Link to Vodafone’s press release: here
Jan 17, 2022
O2 / Telefónica announced it has activated the first mini-radio cells with innovative Open RAN technology (ORAN) in Munich, Germany. In addition to the very well-developed O2 network, this will provide all O2 customers with even more capacity and higher bandwidths at busy locations in the future. The installation of pure 5G Open RAN mini radio cells (“5G standalone”) will follow later in the year.
With the compact, flexibly deployable latest-generation mini mobile cells, the company is able to increase 5G/4G capacities in the O2 network at high-traffic locations in urban areas faster than before. The mini-radio cells, attached to a building facade on Klenzestraße in Munich’s Gärtnerplatz district, supplement the 4G/5G mobile network installed on rooftops in the city center but do not replace it. Link to O2 / Telefónica’s press release: here
January 6, 2022
KT Corporation and Fujitsu Limited have completed a verification facility at the KT Research and Development Center in Seoul, South Korea, at which the two companies leveraged Fujitsu’s Open RAN-based 5G base station equipment to successfully test call connection during interoperability trials for open fronthaul. NTT DOCOMO has provided Fujitsu with technical support throughout the project. With the construction of this new test facility, KT will accelerate the introduction of Open RAN technology to Korea’s 5G network.
As a result of their successful collaboration, the three companies have concluded a Memorandum of Understanding (effective date January 6, 2022), centering on the introduction of software-defined virtualized RAN (vRAN) and RAN Intelligent Controller (RIC) in alignment with the “5G Open RAN Ecosystem”, an initiative whose participants include NTT DOCOMO and Fujitsu. In this Memorandum of Understanding, the three companies agree to cooperate towards further activities including the construction of an O-RAN test facility and multi-vendor interoperability testing in Korea. Link to Fujitsu’s press release: here
The top 28 Open RAN vendors include Parallel Wireless, Mavenir, Altiostar, NEC, Intel, Fujitsu, Qualcomm, Gigatera, Dell, Lime Microsystems, and more.
See the 5G Magazine, Open RAN edition for details.
What is Radio Access Network (RAN)? What is Open RAN? What is OpenRAN? What is O-RAN? What is Virtual RAN (vRAN)?, What is Cloud RAN?
The current state of Open RAN – which countries have deployed/trialed Open RAN? Which operators are deploying/trialing Open RAN deployment?
The current state of Open RAN – which countries and operators in Asia and Oceania have deployed/trialed Open RAN? Who are their ecosystem vendors?
The current state of Open RAN – which countries and operators in Europe have deployed/trialed Open RAN?
The current state of Open RAN – which countries and operators in Americas have deployed/trialed Open RAN?
The current state of Open RAN – which countries and operators in the Middle East and Africahave deployed/trialed Open RAN?
What are the top business drivers and advantages of Open RAN deployment – based on analysis of ongoing deployments & trials?
What is the number one challenge for the Open RAN deployments – based on analysis of ongoing deployments & trials?
Private cellular might be the marquee network technology among today’s 5G advances & Network Convergence should provide a boost to it in 2022. But the tool has different flavors and architectures for taking advantage of new opportunities to inform the larger deployments and in shaping their respective ecosystems. Learn what is the “just right” mix.
The 5G trends and technologies in 2021 and predictions for 2022 from Neil McRae, Managing Director, and Chief Architect at British Telecom. Some of the key trends of 2021 include private networks, edge computing, Open RAN, swapping vendors driven by security concerns (i.e. clean network), keeping networks up in the Covid-19 pandemic, and rolling out 5G and 4G networks.
How do you bridge the Chasm between Promise and Practice? Read the article by Aayush Bhatnagar (SVP, Jio) to discover the 10 ingredients for “Realizing the Promise of 5G”. And the 10 predications for 2022.
The 5G in Smart Manufacturing report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G for smart healthcare report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
The 5G in energy and utility report provides in-depth global and regional insights on the related use cases, technologies, drivers, expected benefits, challenges, ecosystem players, roles of the ecosystem players, industry leaders, startups disruptive this space, and more.
In planned editions of 5G Magazines