How 5G can move the Industrial IoT forward

The industrial Internet of Things (IIoT) has been a big driver of efficiency and innovation for businesses. Hereโ€™s how industry analysts say 5G can take it even further.
How 5G can move the Industrial IoT forward
Image Credit: Verizon

Smart devices like wearables, phones, TVs, and that fancy fridge that keeps track of your groceries all make up a collaborative, interrelated network of web-enabled devices called the Internet of Things (or IoT). We’ve come to rely on this network to gather insights that make our lives easier and improve the ways we connect with each other.


As much as consumers rely on IoT, many industries rely on it, even more, to monitor processes, provide real-time analysis of quality, keep employees safe and maintain operational efficiency. This is the industrial Internet of Things (IIoT), and it’s becoming such a mission-critical technology that an underperforming or unreliable connection could have costly or catastrophic results. So how can industries ensure their connected devices are part of an ultra-fast, low-latency network?

We spoke to two leading tech experts who consult for Verizon, principal analyst Zeus Kerravala of ZK Research and principal analyst Bob O’Donnell of TECHnalysis Research, who share a belief that private 5G networks are a key component of reliable IIoT networks. Here’s what they have to say about IIoT, how industries are currently using private 5G networks to improve applications, and what businesses may want to consider when leveraging the Internet of Things.

Q. How does IIoT differ from IoT?

Kerravala: Prior to the last 10 years, industrial IoT was just IoT: connected devices from manufacturing equipment to facilities equipment like elevators. But in today’s world, everything is connected, like your smart refrigerator and your smart device. Those applications are the IoT but aren’t industrial in nature, so we have the distinction of IIoT to describe what I think of as historically connected devices. Eventually we won’t think of one versus the other, we will assume most devices are connected.

O’Donnell: That’s right. And it’s important to remember that there have been several older connectivity methods used in manufacturing and other industrial applications. In the past, industrial networks were all wired, which limited flexibility. A wired connection might be fine for assembly-line machinery, but it clearly doesn’t work for an autonomous robot. Then Wi-Fi was introduced, but that’s only as reliable as the enabled device’s proximity to the hot spot. Modern IIoT focuses on applying cellular connectivity to older and new machines to improve their function.

Q. Why is private 5G helpful to IIoT deployment?

Kerravala: If you have connected robots on an assembly line moving equipment or materials from one place to another, any network outage could result in the entire factory shutting down. Many industries use Wi-Fi for their wireless IIoT, but it can be flaky and be impacted by interference from other devices on the network. Private 5G, on the other hand, can allow you to create workflows that you know will run more smoothly in comparison. Private 5G provides a reliable and predictable level of connectivity.

For example, a steel manufacturing company in Pennsylvania rolled out private 5G to enhance their operations and limit downtime. In their scrapyard, crane operators rely on information transmitted via the network for instruction on where to sort scrap steel for melting. They’ve reduced unplanned downtime by 70% using one cellular access point, where their previous network required six Wi-Fi access points. When you have these industrial settings where a lot of mission-critical processes take place, 5G can deliver an important level of reliability and predictability.

O’Donnell: Wi-Fi doesn’t work in all situations. In big, cavernous manufacturing facilities or environments where work is performed both indoors and outdoors, Wi-Fi may not provide reliable connectivity. So people are moving to cellular connections for improved, more reliable coverage with a consistent quality of service. With private 5G, you get high speeds and low latency, but the consistency of that low latency is even more important because then you can accurately coordinate all your machines.

Q. What challenges are industries able to overcome with 5G-powered IIoT?

O’Donnell: A common one I’ve encountered is coverage. Think of ports, logistics centers or warehouses that have both indoor and outdoor demands for connectivity. Generally speaking, if there’s an outdoor situation, a cellular network is going to work better than Wi-Fi. And private 5G provides the coverage needed for new technology like automated guided vehicles that move pallets and real-time analytics to track vehicles and inventory.

Then there are venues and stadiums that can leverage private 5G for better performance to improve guest experiences. This could be anything from video and interactive displays to the amount of time it takes to process a transaction on a hand-held point-of-sale device.

Kerravala: I’ve talked with some airports that are experimenting with private 5G networks for opt-in accelerated access. That’s an ideal use case where you want the data transfer to be as close to instantaneous as possible. If someone walks through a scanner, the data needs to come back from the cloud before the person gets lost in the crowd. So you need a combination of speed and analytics to process a lot of data quickly.

O’Donnell: Private 5G can help address security issues, too. Wi-Fi tends to be open, but cellular networks require either a SIM or e-SIM to authenticate users on the network. That adds a core layer of security that’s not available on Wi-Fi.

Q. What should companies consider before moving to private 5G?

O’Donnell: Their physical requirements, for sure. Do you need coverage in areas where Wi-Fi isn’t cutting it? Secondly, security. Even for companies that don’t think they need to focus on security, the rise in cybercrime and increased attempts at disruption are becoming problematic for a lot of organizations, particularly in regulated industries or government and defense. Again, security is an advantage of private cellular networks over Wi-Fi because you need a SIM to be authenticated on the network.

Kerravala: That’s certainly true. Security should be top of mind, and companies should also consider who will set up and manage the private 5G network. Not all private 5G networks are the same. Some companies may have the ability to deploy their own infrastructure, but others will want to work with a knowledgeable provider to explore managed service offerings that may mitigate complexity.

A knowledgeable partner may be able to help you avoid unintended consequences too. Because, while there are a lot of interesting possibilities from an analytics perspective in merging your operational technology (OT) and information technology (IT) systems, there’s also risk involved. For example, when a major retailer was hacked in 2013, it actually occurred through an HVAC vendor system. You could look at that as an OT breach. It created a back door into stores’ A/C systems, which led to the point-of-sale network. Basically, you want a private network that’s well managed, has good communication between OT and IT, and has segmented technology and modern security in place so that if there is a breach, it can be contained.

O’Donnell: Lastly, companies should think about the applications they want to run on the network and what their computing requirements are.

Private 5G isn’t an end unto itself. It’s really a means to an end, with the ultimate goal being the efficiency of the organization or being able to analyze data quickly and accurately. So think of where you want to go in terms of operations, and see how private 5G can help you get there.

See what Verizon 5G can do for you.

Verizon News Feed Read Moreย ย 


Recent Content

Ericsson, Volvo Group, and Airtel have joined forces to explore how 5G Advanced, Digital Twin technology, and Extended Reality (XR) can transform manufacturing in India. The research, conducted at Volvoโ€™s R&D Centre in Bangalore, will focus on smart factories, immersive training, and real-time process optimization. With Airtelโ€™s low-latency 5G network, the collaboration aims to enhance industrial automation, workforce training, and AI-driven efficiencies, setting a benchmark for Industry 4.0 and Industry 5.0 innovations.
The Department of Telecommunications (DoT) has announced the 5G Innovation Hackathon 2025, a six-month competition to drive 5G-powered solutions across industries. Open to students, startups, and professionals, the hackathon will focus on AI, IoT, smart cities, and next-gen connectivity innovations. Participants will receive funding, mentorship, and access to 100+ 5G Use Case Labs. Winners will showcase their solutions at India Mobile Congress 2025.
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality. Discover key insights, real-world case studies, and strategic actions for telecom leaders. Download the Full Report Now to stay ahead in AI-powered service assurance.
Dive into our in-depth coverage of MWC 2025, highlighting the latest innovations in 5G, AI, IoT, and more. Discover how industry leaders are shaping the future of technology with groundbreaking announcements and developments unveiled during the event.
At MWC 2025 Keynote 7: Tech Game Changers, industry pioneers including Peggy Johnson (Agility Robotics), Yuanqing Yang (Lenovo), Naveen Rao (Databricks), Arthur Mensch (Mistral AI), and Kate Ryder (Maven Clinic) shared insights on AI, robotics, and digital transformation. Key topics included humanoid robotics, AI-driven UI, healthcare innovation, and enterprise automation. Discover how AI, data intelligence, and open-source models are revolutionizing industries worldwide.
As Europe accelerates its digital transformation, industry leaders from Vodafone, Orange, Deutsche Telekom, and Telefรณnica will explore strategies to enhance 5G and fiber networks, AI-driven innovation, and regulatory coherence. With growing global competition, Europe must balance connectivity expansion, fair competition, and sustainability to remain a leader in the digital economy. Join MWC 2025 to discover how Europeโ€™s telecom vision is shaping the future.
Scroll to Top