Get Free Magazine

Five reasons private mobile network security will ascend the CISO priority list in 2023 | OneLayer

While private mobile networks create new security considerations for enterprise security leaders, proactive measures can be taken to mitigate these risks and stay a step ahead. In this article, we provide the following areas to focus on in 2023 as private mobile network security earns a spot on the CISO priority list.

If you ask a typical CISO about their ‘worry list,’ private mobile network security probably isn’t on there today. After all, most security leaders already have their hands full defending employee endpoints, traditional enterprise networks, and an ever-expanding cloud footprint.

Plus, most are accustomed to leaving mobile network security in the hands of mobile network operators (MNOs). But the growing use of private LTE and 5G networks and other technology developments in the mobile industry will thrust mobile network security onto the enterprise CISO agenda in 2023.

Here are five reasons why.

 

As IoT and private mobile network usage accelerates, device security will become significantly more complex

In industries like utilities, manufacturing, healthcare, and mining, Internet of Things (IoT) sensors are rapidly moving from the lab to the real world. The data insights that can be gained from IoT devices are often central to these organizations’ digital transformation and growth plans. But IoT devices are only effective when they have persistent network connectivity.

And while existing enterprise Ethernet and WiFi networks can sometimes serve as a starting point, many enterprises are hesitant to overwhelm their business-critical networks with sensor traffic. For this reason, private mobile networks are emerging as the optimal choice for IoT connectivity. 

Cellular networks have the range and flexibility to support the unique demands of IoT sensors. And deploying a separate network for IoT needs also keeps core enterprise IT networks isolated from any IoT device risks.

However, this industry shift also creates new challenges for security teams. Many enterprises already struggle to find and remediate hidden software and hardware vulnerabilities, and IoT device adoption severely exacerbates this problem. IoT devices have a particularly poor track record with vulnerabilities, and they also appear in much greater numbers than end-user devices.

The greater overlap between the physical and digital works created by IoT devices and private mobile networks is another important new consideration for enterprise security teams.

In many industries, IoT sensors must be placed well beyond the reach of existing enterprise networks, including at very remote locations. This makes it nearly impossible for security teams to prevent motivated threat actors from gaining physical access to devices. Since physical access to an IoT device opens the door to attack techniques like SIM cloning or SIM swapping, there is added pressure placed on monitoring efforts and a greater need for network segmentation to prevent lateral movement from compromised IoT devices to other areas of the enterprise network.

As the cost and complexity of private mobile network deployment decreases, security teams will quickly face an entirely new category of threats

In addition to being well-suited for the network demands of IoT, private mobile networks are also more practical and cost-effective to deploy than they once were. Cellular networks previously required specialized and extremely costly hardware infrastructure to operate. But this is now changing. Increasingly, the “brains” for a cellular network, known as the packet core, can be run as a virtual instance in the cloud. Just as the cloud changed the economics of enterprise data center infrastructure, the same is now happening with cellular network technologies.

Network slicing

In addition, as the MNOs evolve their networks to 5G technology, a technique called 5G network slicing becomes possible. 5G network slicing allows for the creation of multiple virtualized networks on the same physical network infrastructure. One application of 5G network slicing is to provide private mobile networks to enterprises without any physical network buildout. This is another way that private mobile networks are becoming much more practical and cost-effective for enterprises to adopt.

Unfamiliar architecture for security teams

The downside of these faster-to-deploy and less expensive private mobile network architectures is that they are unfamiliar to most enterprise security teams. While MNOs have deep experience protecting cellular networks, a typical enterprise does not. In addition, there are likely mobile attack vectors that do pose a risk to a stand-alone MNO infrastructure but do introduce significant risks when private mobile networks and enterprise networks are interconnected.

A broader geographic footprint creates new enterprise security challenges

While geographic reach is a necessity when it comes to IoT, it also creates a new set of security challenges, particularly when it comes to physical security. After all, it’s difficult for a threat actor to walk into a secure enterprise data center and access a traditional enterprise system. But climbing a utility pole in an isolated location to gain physical access to an IoT device is much easier to pull off.

As IoT devices multiply and find their way into less conventional, very remote locations, the game changes dramatically for enterprise security teams. When physical control over enterprise devices can’t be assured, approaches like Zero Trust Architecture stop being aspirational and instead become a necessity.

Existing enterprise security tools cannot see or stop cellular network threats

As enterprises face mounting pressure to innovate, security teams are often forced to play catch-up with risk mitigation measures. This will be more difficult than usual as IoT and private mobile network initiatives gain momentum. Most new security requirements in the enterprise setting can be addressed by using existing security tools in new ways. But most of these tools are entirely incompatible with cellular network technologies. Cellular networks are different from traditional enterprise networks in two important ways. First, they use a completely different network topology. The traditional IP-based networks used by most enterprises today have a mesh topology that includes granular access controls to govern traffic flow.

In contrast, cellular networks use a star topology. All traffic flows through a centralized packet core, and very little can be done natively to govern and segment traffic, since traditional security approaches like access control lists cannot be extended to private mobile networks. The second factor that renders existing tools and practices ineffective is that cellular devices use different identifiers. Enterprise security tools that rely on IP addresses and MAC addresses to identify fingerprint devices will not be able to do the same for cellular devices that use specialized device identifiers such as international mobile equipment identifiers (IMEI). This makes it impossible for security tools to put cellular devices into a business context and assess risk – if they even see them at all.

The first wave of cellular-based attacks will hit enterprises in 2023

Market indicators suggest that private mobile network adoption is accelerating. Nokia, one of the leading providers of mobile network technologies, reported a greater than 2.5 times increase in private mobile network customers between Q2 2020 and Q2 2022 in their Q3 2022 investor presentation. Ericsson, another key mobile network technology leader, is seeing similar momentum and projects 20 to 30 percent annual growth in enterprise wireless networks in their 2021 annual report. While many organizations are proactively implementing private mobile network security strategies, we’ll likely see enterprises get blindsided by major cellular-based attacks in 2023 as these new deployments come online.

For example, one type of attack that we can expect to see regularly as enterprise adoption of cellular networks increases is SIM hijacking. Traditionally, SIM hijacking has involved using social engineering techniques to convince an MNO to reassign a number to a threat actor’s device. These attacks will now be directed at enterprises with less mature cellular security workflows.

Additionally, in IoT scenarios, it is more likely that threat actors will be able to gain physical access to SIM cards. To revisit our utility pole example above, if a threat actor gains physical access to an IoT device in a remote location, they can attempt to remove the SIM, install it in a more capable device, and use it to access the private mobile network.

Getting started: the top mobile security priorities to pursue in 2023

While private mobile networks create new security considerations for enterprise security leaders, proactive measures can be taken to mitigate these risks and stay a step ahead. The following are some recommended areas to focus on in 2023 as private mobile network security earns a spot on the CISO priority list.

Top Priorities

  1. Integrate existing security products with mobile device identity tools to enhance visibility.
  2. Ensure that your device vulnerability management efforts extend to IoT and other cellular-connected devices.
  3. Implement a Zero Trust network segmentation model on all private cellular networks.

These steps will provide a sound security foundation as your organization realizes the many business benefits of private mobile network connectivity.

Read the complete article in the 5G Magazine

Spotlight Your Innovation in 5G Magazine

The Private Network Revolution

Related Magazine Content

Magazines & Article
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazines & Article
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazines & Article
The rise of smart vehicles, projected to surpass 470 million connected cars by 2025, is rapidly transforming the transportation landscape. Enabled by IoT, these vehicles offer real-time communication with infrastructure, on-the-go diagnostics, and advanced safety features. Yet, challenges like patchy cellular network coverage persist. From facilitating autonomous driving and vehicle-to-vehicle communication to enhancing safety and sustainability, satellite-powered IoT is set to accelerate the connected vehicles revolution, optimizing transportation efficiency and environmental impact.
Magazines & Article
The rise of smart vehicles, projected to surpass 470 million connected cars by 2025, is rapidly transforming the transportation landscape. Enabled by IoT, these vehicles offer real-time communication with infrastructure, on-the-go diagnostics, and advanced safety features. Yet, challenges like patchy cellular network coverage persist. From facilitating autonomous driving and vehicle-to-vehicle communication to enhancing safety and sustainability, satellite-powered IoT is set to accelerate the connected vehicles revolution, optimizing transportation efficiency and environmental impact.
Magazines & Article
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazines & Article
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazines & Article
The mobile phone industry is undergoing a transformation, with emerging technology enabling direct communication between standard mobile phones and satellites. With regulatory changes, international partnerships, and new technological standards, mobile devices will soon boast enhanced satellite connectivity. Companies like SpaceX and Apple are diving deep into the race to provide extensive satellite communication, partnering with T-Mobile and Globalstar, respectively. As the competition intensifies, companies are pushed to innovate or risk becoming obsolete.
Magazines & Article
The mobile phone industry is undergoing a transformation, with emerging technology enabling direct communication between standard mobile phones and satellites. With regulatory changes, international partnerships, and new technological standards, mobile devices will soon boast enhanced satellite connectivity. Companies like SpaceX and Apple are diving deep into the race to provide extensive satellite communication, partnering with T-Mobile and Globalstar, respectively. As the competition intensifies, companies are pushed to innovate or risk becoming obsolete.
Magazines & Article
We are witnessing a paradigm shift in telecommunications. Open RAN is at the forefront, emphasizing a disaggregated and open approach to network architecture. This change has the potential to redefine global communication networks by enabling interoperability, fostering innovation, and democratizing access to advanced 5G technology. However, international cooperation on the Open RAN policy is vital to harness its potential fully. Governments worldwide must embrace pro-Open RAN policies, unlock funding, and encourage cross-border investments. Join Open RAN Policy Coalition in this revolution to enhance connectivity, narrow the digital divide, and promote socio-economic development worldwide.
Magazines & Article
We are witnessing a paradigm shift in telecommunications. Open RAN is at the forefront, emphasizing a disaggregated and open approach to network architecture. This change has the potential to redefine global communication networks by enabling interoperability, fostering innovation, and democratizing access to advanced 5G technology. However, international cooperation on the Open RAN policy is vital to harness its potential fully. Governments worldwide must embrace pro-Open RAN policies, unlock funding, and encourage cross-border investments. Join Open RAN Policy Coalition in this revolution to enhance connectivity, narrow the digital divide, and promote socio-economic development worldwide.
Magazines & Article
In the rapidly advancing world of 5G, small cell networks are leading the charge toward the growth of Open RAN. The small cell ecosystem has always been a champion of innovation, allowing new and established vendors to coexist. Now, organizations like the SCF and O-RAN Alliance are working together to face the challenges of creating a RAN that is not only multivendor but, in many instances, virtualized. By leveraging the lessons learned from early experiences of open networking, these organizations are creating blueprints to help mitigate risks for early adopters. As per SCF’s latest forecast, open vRAN architectures are set to account for over half of the small cell installed base by 2028, signifying a monumental shift in the industry.
Magazines & Article
In the rapidly advancing world of 5G, small cell networks are leading the charge toward the growth of Open RAN. The small cell ecosystem has always been a champion of innovation, allowing new and established vendors to coexist. Now, organizations like the SCF and O-RAN Alliance are working together to face the challenges of creating a RAN that is not only multivendor but, in many instances, virtualized. By leveraging the lessons learned from early experiences of open networking, these organizations are creating blueprints to help mitigate risks for early adopters. As per SCF’s latest forecast, open vRAN architectures are set to account for over half of the small cell installed base by 2028, signifying a monumental shift in the industry.
Magazines & Article
Discover how the Telecom Infra Project (TIP) is leading the Open RAN revolution by accelerating the commercial adoption of secure, high-performance network solutions. Tackling challenges in Open RAN adoption and catalyzing industry effort, TIP’s project groups, badging processes, and marketplace initiatives are reshaping the future of Open RAN and 5G technology.
Magazines & Article
Discover how the Telecom Infra Project (TIP) is leading the Open RAN revolution by accelerating the commercial adoption of secure, high-performance network solutions. Tackling challenges in Open RAN adoption and catalyzing industry effort, TIP’s project groups, badging processes, and marketplace initiatives are reshaping the future of Open RAN and 5G technology.
Magazines & Article
Welcome to the era of 5G revolution with the CAMARA Project. This initiative exposes telco network capabilities via APIs, simplifying network complexity and providing benefits across telco operators and countries. It’s transforming the very fabric of telecom networks into robust service platforms, opening the door for enhanced service capabilities and fresh revenue streams for telecom providers. Dive into this article to learn about the CAMARA Project’s journey, its approach towards standardization and simplification, and its vision for the future. Explore now!
Magazines & Article
Welcome to the era of 5G revolution with the CAMARA Project. This initiative exposes telco network capabilities via APIs, simplifying network complexity and providing benefits across telco operators and countries. It’s transforming the very fabric of telecom networks into robust service platforms, opening the door for enhanced service capabilities and fresh revenue streams for telecom providers. Dive into this article to learn about the CAMARA Project’s journey, its approach towards standardization and simplification, and its vision for the future. Explore now!
Magazines & Article
With AI and edge computing, the telecommunications industry is entering a new era of innovation. This in-depth article explores the synergies of Generative AI, edge computing, and OSS/BSS platforms in reshaping the future of telecom operations. From improved operational efficiency to real-time customer support, the possibilities are astounding. Take a journey into the future of telecommunications with us!
Magazines & Article
With AI and edge computing, the telecommunications industry is entering a new era of innovation. This in-depth article explores the synergies of Generative AI, edge computing, and OSS/BSS platforms in reshaping the future of telecom operations. From improved operational efficiency to real-time customer support, the possibilities are astounding. Take a journey into the future of telecommunications with us!
Magazines & Article
In this article, we delve into the transformative potential of 5G in the Spatial Web era. With fascinating insights into the convergence of 5G, AI, AR, VR, and NFTs, we illuminate how these technologies are reshaping the retail industry and consumer engagement at large. As the global Spatial Web market surges towards an estimated value of $30.7 billion by 2025, we dissect the pivotal role of 5G and telcos in meeting the heightened demands of this digital revolution. Explore this riveting piece for a deep understanding of the future of consumer interaction in the evolving Spatial Web landscape.
Magazines & Article
In this article, we delve into the transformative potential of 5G in the Spatial Web era. With fascinating insights into the convergence of 5G, AI, AR, VR, and NFTs, we illuminate how these technologies are reshaping the retail industry and consumer engagement at large. As the global Spatial Web market surges towards an estimated value of $30.7 billion by 2025, we dissect the pivotal role of 5G and telcos in meeting the heightened demands of this digital revolution. Explore this riveting piece for a deep understanding of the future of consumer interaction in the evolving Spatial Web landscape.

Content, Design, And Lead Generation Services to Elevate your Marketing Efforts

Download Sponsored Content

Books by Affiliates

TeckNexus earns commissions from qualifying purchases made through affliate links at no extra cost to you.

Research Reports by TeckNexus

Join Our Newsletter

Subscribe for industry insights. Elevate your influence – promote with us!

Related Content