The Satellite Connectivity Revolution | The race for global coverage in a new mobile phone industry | Seraphim

The mobile phone industry is undergoing a transformation, with emerging technology enabling direct communication between standard mobile phones and satellites. With regulatory changes, international partnerships, and new technological standards, mobile devices will soon boast enhanced satellite connectivity. Companies like SpaceX and Apple are diving deep into the race to provide extensive satellite communication, partnering with T-Mobile and Globalstar, respectively. As the competition intensifies, companies are pushed to innovate or risk becoming obsolete.

Last year, the space sector restarted an arms race for technology dominance in mobile phones.

A convergence of new technology, regulatory changes, global partnerships, and new standards means that standard mobile phones will be able to communicate with satellites, improving satellite connectivity everywhere. Keen hikers have used satellite-to-cell technology for well over a decade: Globalstar’s Spot emergency beacon, for example, can be used to call in a rescue from anywhere. But the high cost of satellite connectivity data and phones means that satellite-to-cell has, until now, remained a niche market. In recent years, however, several innovative startups, including AST Mobile and Lynk, have been working to revolutionize the satellite-to-cell industry. Their ambitious goal is to deliver broadband to mobile phones. This will take quite some time to deliver. Meanwhile, large swathes of relatively well-connected countries, such as the UK, still lack basic messaging coverage. But that seems likely to change very rapidly in 2023.

How has mobile technology evolved over the years?

The foundation for the development of universal messaging via satellite connectivity was laid with the ratification of the Third Generation Partnership Project – known as ‘3GPP Release 17’ – in March 2022. This seemingly mundane document forms the backbone of most mobile phone operations. 3GPP standards were introduced to enhance interoperability when 3G was first launched, allowing mobile phones to operate across various networks.

As technology has evolved (we are now on 5G!), the name has remained the same. Stakeholders ranging from chip and phone manufacturers to mobile network operators have collaborated on each release of these standards to implement new technology. The latest focus has been on allowing satellites to integrate into terrestrial networks, essentially functioning as cell towers in space. Mobile phone chips are built to this standard. This means that the next generation of smartphones released in 2023 and 2024 will be able to message anywhere across the globe, no matter the terrain, thanks to the use of satellites.

The race to develop satellite connectivity technology

Over the last year, the race has been on to see who would leverage satellite connectivity technology the fastest. As is often the case, Elon Musk jumped first. His company, SpaceX, acquired satellite IoT provider Swarm in 2021 to help build its capabilities. Then in August 2022, SpaceX announced their partnership with T-Mobile, promising an end to coverage blackspots for T-Mobile customers using Starlink’s Gen 2 satellites. Messaging would come first, with higher data rates allowing voice and more coming later. SpaceX is also rolling this out internationally, with messaging promised on the Swiss network Salt by 2024.

In March of this year, SpaceX took the next steps towards deployment. The US Federal Communications Commission (FCC) announced that mobile phone operators, such as T-Mobile, could allow satellite operators, like SpaceX, to use their spectrum. Spectrum is the means by which satellites talk to devices on Earth and represents the key enabler for the satellite industry.

Radiofrequency spectrum is the range of electromagnetic waves used to transmit data, and the amount of data that can be transmitted is directly related to the amount of spectrum you can use. Simply put, if a satellite connectivity operator does not have a spectrum allocation, it cannot communicate with Earth or any devices on it. Spectrum is limited, and, in the case of the mobile services spectrum used to talk to mobile devices, most of the spectrum was often allocated in the 1990s.

Therefore, it would be extremely difficult, if not impossible, to be allocated a meaningful amount of spectrum now. In addition to spectrum, satellite operators also need landing rights, i.e., permissions from each country to allow service and connection in that country. That is why Starlink, for example, is not available yet in every country. Partnering with someone who has both spectrum and landing rights, as SpaceX did with T-Mobile, could be the fastest route to deployment. Apple also took the partnering route, this time working with a satellite connectivity operator that has spectrum and international landing rights. Apple announced their partnership with Globalstar in September 2022. Arguably, they are ahead of SpaceX after quickly deploying the iPhone’s emergency beacon capability in November. This is the first time such a feature has been available via satellite without a specialized device, like Globalstar’s Spot. Messaging will come next as Globalstar launches more satellites.

How can companies adapt to these growing changes?

To respond quickly, companies don’t have time to deploy their own constellations – for most, that would take two to three years at least, even if they had the spectrum. Technology that leverages existing satellite connectivity technology will be increasingly attractive, and startups like Skylo and ESat Global are working to do just that. Phone manufacturers and network operators are likely to find willing partners too. Heritage GEO operators, like Intelsat, Viasat, and SES, have seen their business models squeezed by SpaceX and OneWeb. Providing connectivity to mobile phones is a whole new market with a different way of doing business. It will be interesting to see who innovates in this space. 

Ultimately, the last few months have presented a masterclass in the competitive arms race for new satellite connectivity technologies. Everyone outside the industry ignores the announcement of a new technology or standard. A competitor pre-empts another’s announcement. Suddenly, in the space of a few short months, the pressure is clearly on for every single player in the market to innovate or fall by the wayside. Some of these companies could ultimately be fighting for their survival in this market, and the innovation that drives their survival will be exciting to watch.

Read the complete article in the 5G Magazine

Spotlight Your Innovation in 5G Magazine

The Private Network Revolution

Related Magazine Content

Magazine
Explore Nokia’s leadership in private 5G/LTE networks, showcasing a global reach with over 500 enterprise customers and 1500+ mission-critical networks across industries like healthcare, manufacturing, and more.
Magazine
Explore Nokia’s leadership in private 5G/LTE networks, showcasing a global reach with over 500 enterprise customers and 1500+ mission-critical networks across industries like healthcare, manufacturing, and more.
Magazine
Explore how Cox’s MOCN Neutral Host revolutionizes indoor cellular connectivity in education and healthcare, offering robust, cost-effective solutions.
Magazine
Explore how Cox’s MOCN Neutral Host revolutionizes indoor cellular connectivity in education and healthcare, offering robust, cost-effective solutions.
Magazine
Discover how 5G analytics, through NWDAF, enhances telecom operations, enabling cost reduction and new revenue channels.
Magazine
Discover how 5G analytics, through NWDAF, enhances telecom operations, enabling cost reduction and new revenue channels.
Magazine
Explore how John Deere is systematically adopting private 5G networks, addressing challenges arising from rapid growth of industrial IoT and network limitations.
Magazine
Explore how John Deere is systematically adopting private 5G networks, addressing challenges arising from rapid growth of industrial IoT and network limitations.
Magazine
This edition dives into the evolving world of satellite technology and its synergy with modern communication networks, highlighting key developments and challenges. Seraphim opens the discussion with a detailed look at the global race in satellite connectivity, emphasizing its impact on the mobile phone industry. Astrocast then explores the economic aspects of Satellite IoT, underlining its growing importance in global connectivity.
Magazine
This edition dives into the evolving world of satellite technology and its synergy with modern communication networks, highlighting key developments and challenges. Seraphim opens the discussion with a detailed look at the global race in satellite connectivity, emphasizing its impact on the mobile phone industry. Astrocast then explores the economic aspects of Satellite IoT, underlining its growing importance in global connectivity.
Magazine
Non-Terrestrial Networks (NTN), including satellite and related platforms, amplify the reach of 5G IoT, providing connectivity in remote or disaster-hit areas. With potential applications ranging from remote industrial monitoring to precision farming, the combination of 5G and IoT is ushering in a new era of digital transformation. Yet, challenges like scalability, energy efficiency, and security remain to be addressed, and innovations in edge computing, AI, and advanced communication technologies pave the way forward.
Magazine
Non-Terrestrial Networks (NTN), including satellite and related platforms, amplify the reach of 5G IoT, providing connectivity in remote or disaster-hit areas. With potential applications ranging from remote industrial monitoring to precision farming, the combination of 5G and IoT is ushering in a new era of digital transformation. Yet, challenges like scalability, energy efficiency, and security remain to be addressed, and innovations in edge computing, AI, and advanced communication technologies pave the way forward.
Magazine
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazine
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazine
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazine
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazine
The space industry should reach $1 trillion in annual revenue by 2040, according to a report by Citibank analysts. At the same time, a recent report from Inmarsat and Globant estimates the world could reach net zero up to ten years ahead of the 2050 target if industries make the most of existing and emerging space-based satellite technology. Suffice to say, space can offer an array of solutions for sustainability, security and connectivity. Mobile communications have evolved from generation to generation, adding better capabilities, and the trend is far from being over. The sixth generation is already in the making, and the core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration and interaction. 6G will also aim to enhance machine communication, with the focus on autonomous machines and vehicles capable of sensing their surrounding environment in real time (network as a sensor). This article expands on how small satellites will augment the future of communications that starts already today.
Magazine
The space industry should reach $1 trillion in annual revenue by 2040, according to a report by Citibank analysts. At the same time, a recent report from Inmarsat and Globant estimates the world could reach net zero up to ten years ahead of the 2050 target if industries make the most of existing and emerging space-based satellite technology. Suffice to say, space can offer an array of solutions for sustainability, security and connectivity. Mobile communications have evolved from generation to generation, adding better capabilities, and the trend is far from being over. The sixth generation is already in the making, and the core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration and interaction. 6G will also aim to enhance machine communication, with the focus on autonomous machines and vehicles capable of sensing their surrounding environment in real time (network as a sensor). This article expands on how small satellites will augment the future of communications that starts already today.
Magazine
Non-Terrestrial Networks will be an integral part of 6G to provide global connectivity with seamless coverage. The initial introduction of NTN in the 5G system is an important step for the establishment of a global standard for integrated scenarios with terrestrial and Non-Terrestrial networks. However, a much more flexible approach to integrate dynamic network elements such as UAVs, (V)LEO satellites and small satellites is required compared to NTN in 5G.
Magazine
Non-Terrestrial Networks will be an integral part of 6G to provide global connectivity with seamless coverage. The initial introduction of NTN in the 5G system is an important step for the establishment of a global standard for integrated scenarios with terrestrial and Non-Terrestrial networks. However, a much more flexible approach to integrate dynamic network elements such as UAVs, (V)LEO satellites and small satellites is required compared to NTN in 5G.

Content, Design, And Lead Generation Services to Elevate your Marketing Efforts