NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMC’s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integration—laying the foundation for “AI factories” powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout
Image Credit: Nvidia

NVIDIA Builds Domestic AI Infrastructure with TSMC, Foxconn, and Wistron

NVIDIA has officially announced a major expansion of its AI infrastructure footprint—this time on U.S. soil. For the first time in the company’s history, NVIDIA will manufacture its AI supercomputers and next-generation semiconductors entirely within the United States.


In collaboration with manufacturing giants TSMC, Foxconn, and Wistron, NVIDIA is establishing over one million square feet of dedicated production capacity in Arizona and Texas. This move supports not just chip manufacturing but the entire lifecycle of AI supercomputer development—from silicon fabrication and testing to packaging and system integration.

The initiative signals a fundamental shift in the AI supply chain and reflects growing pressure for technological sovereignty, supply chain resilience, and the onshoring of strategic infrastructure.

NVIDIA Blackwell AI Chips Begin Production in Arizona with Full Supercomputer Builds in Texas

NVIDIA’s new Blackwell chipsets—tailored for AI model training and inference—have officially entered production at TSMC’s advanced node facilities in Phoenix, Arizona. These chips are at the heart of NVIDIA’s next-generation computing systems, designed to handle the computational demands of modern large language models (LLMs) and Generative AI.

Down the supply chain, two major supercomputer manufacturing sites are being launched: one in Houston, operated by Foxconn, and another in Dallas, operated by Wistron. These factories will assemble, test, and integrate the full AI computing platforms powered by the Blackwell architecture.

Mass production is expected to scale significantly over the next 12–15 months, with NVIDIA signaling that these plants will play a pivotal role in meeting global demand for AI processing power.

Building a Domestic AI Supply Chain—From Silicon to System Integration

NVIDIA is addressing more than just chip production. The entire value chain—from chip packaging to end-to-end testing—is being localized. The company is partnering with Amkor and SPIL in Arizona for backend manufacturing processes, which are typically outsourced to Asia. These partnerships support the packaging of advanced chipsets and ensure seamless integration into full-stack AI supercomputers.

By 2029, NVIDIA aims to manufacture up to $500 billion worth of AI infrastructure in the U.S., a bold strategy that emphasizes economic impact alongside technical advancement. It also showcases a commitment to national priorities such as supply chain independence, high-tech job creation, and domestic innovation.

NVIDIA’s AI Factories Signal a Shift in Global Tech Infrastructure

NVIDIA describes these new manufacturing sites as “AI factories”—data center-grade facilities built solely for AI workloads. Unlike traditional compute environments, these factories are optimized for real-time data processing, model training, inference, and advanced analytics.

Tens of such gigawatt-scale AI factories are expected to be built in the coming years to support use cases across sectors like healthcare, financial services, automotive, and telecom.

These facilities will be vital for delivering high-throughput AI capabilities to power applications like digital twins, autonomous systems, virtual assistants, and generative AI tools.

NVIDIA Uses Omniverse and Robotics to Power Smart AI Factories

To streamline operations, NVIDIA plans to use its own technology stack to design and run these factories. Using the NVIDIA Omniverse, the company will build high-fidelity digital twins of its production facilities to simulate workflows, test equipment placement, and optimize throughput before physical deployment.

Additionally, NVIDIA Isaac GR00T, the company’s robotics platform, will automate large portions of the manufacturing process. These smart robots will handle component assembly, automated inspection, and logistics, reducing error margins and increasing productivity across sites.

This integration of AI, robotics, and automation signals a new standard in factory operations, merging digital infrastructure with physical manufacturing in real time.

U.S. AI Manufacturing Expansion Fuels Jobs and Global Tech Leadership

NVIDIA’s U.S.-based production is expected to generate hundreds of thousands of jobs, from factory technicians to software engineers. It also strengthens the U.S. position in the global race to dominate AI, semiconductors, and advanced computing.

According to Jensen Huang, Founder and CEO of NVIDIA, “The engines of the world’s AI infrastructure are being built in the United States for the first time. Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain, and boosts our resiliency.”

A Strategic Move That Sets the Tone for the AI-First Economy

NVIDIA’s announcement isn’t just about moving manufacturing closer to home—it’s a signal to the broader tech ecosystem. As AI becomes foundational to everything from drug discovery and cybersecurity to smart cities and self-driving vehicles, companies will need more localized, secure, and scalable AI infrastructure.

By integrating semiconductor manufacturing with edge computing, digital twins, and AI software frameworks under one national footprint, NVIDIA is building a comprehensive blueprint for the AI-powered future.


Recent Content

5G private networks are transforming airport operations, enabling smart, data-driven environments. As air travel continues to grow, robust wireless connectivity is key to improving operational efficiency, safety, and passenger experience. Join the discussion on 5G and aviation at MWC Las Vegas’ Connected Aviation Summit, featuring insights from industry leaders.
Liquid Intelligent Technologies partners with Globalstar to deliver advanced 5G Private Networks across Africa, the Middle East, and the Gulf. By leveraging Globalstar’s n53 spectrum and Liquid’s fiber and satellite networks, industries such as mining, telecommunications, and manufacturing will gain access to high-speed, scalable, and secure wireless solutions. This partnership will support AI, IoT, and automation, transforming connectivity in remote and high-value sectors.
InfiniG’s Mobile Coverage as a Service (MCaaS) solution at Parkside Elementary enhances communication, safety, and access to modern learning tools. Supported by partners like Intel, AT&T, and T-Mobile, this private network deployment provides reliable mobile coverage, addressing safety concerns and bridging the digital divide. By integrating AI tools and secure infrastructure, students and staff benefit from a connected, inclusive learning environment.
Nokia and Rockwell Automation have partnered to enable private 5G standalone networks, driving industrial transformation through enhanced connectivity, real-time data, and automation. By leveraging CBRS spectrum, industries can now access secure, high-speed 5G solutions that improve operational efficiency and support cutting-edge technologies like AI, IIoT, and AR.
MWC Las Vegas 2024, running from October 8-10, is North America’s top event for the enterprise 5G ecosystem. With keynotes from major players like Intel, Nvidia, Qualcomm, and T-Mobile for Business, this event brings together leaders from 5G carriers, hardware manufacturers, and technology vendors. Attendees will explore cutting-edge 5G use cases across sectors like aviation, automotive, manufacturing, and government, where AI, edge computing, and connected networks are revolutionizing industries.
AI projects are struggling to deliver expected benefits due to complexity, cost, time, technical challenges, and market dynamics. The innovation-adoption gap is outstripping the market’s ability to adapt and find practical applications, leading to overinvestment in promising ideas without sufficient market demand. A fundamental shift in perspective is needed: AI should be viewed as a tool to enhance human productivity, not as a replacement for humans. Successful AI projects incorporate humans at critical junctures, such as problem definition, data preparation, model training, output validation, and ethical oversight. Balancing potential with pragmatism is crucial for successful AI implementation.

Download Magazine

With Subscription

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top