Private Network Check Readiness - TeckNexus Solutions

IMDEA Networks Leads 6G Evolution with DISCO6G for Real-Time Sensing & Communication

IMDEA Networks, with partners UC3M, UAM, and UPM, launches DISCO6G—an ambitious 6G project integrating real-time communication and environmental sensing. Led by Jess Omar Lacruz, the initiative focuses on ISAC systems, intelligent surfaces, AI-driven signal optimization, and non-invasive diagnostics to enhance healthcare, smart mobility, and autonomous systems.

On March 24, 2025, IMDEA Networks announced its participation in the DISCO6G project, in collaboration with UC3M, UAM, and UPM, and funded by the Madrid Regional Government. This project is set to significantly enhance the capabilities of future mobile networks through the integration of communication and environmental sensing.

Understanding DISCO6G: 6G Networks with Built-In Real-Time Sensing


DISCO6G stands for the integration of Distributed Sensing and COmmunication for 6G networks. The project aims to develop next-generation mobile networks that not only transmit data but also act as real-time, distributed sensors. This dual functionality is essential for applications requiring high reliability and responsiveness such as in transportation and healthcare systems.

Evolving ISAC Systems: Enhancing 6G Environmental Awareness and Timing

The team at IMDEA Networks, led by senior researcher and principal investigator Jess Omar Lacruz, is focusing on the evolution of Integrated Sensing and Communication (ISAC) systems for 6G networks. One of their key initiatives is the development of advanced ISAC architectures. These architectures are designed to enhance environmental awareness in real-time by integrating distributed sensing across multiple network nodes.

In addition to architectural advancements, the team is tackling the challenge of ultra-precise synchronization across large-scale networks. Accurate timing is crucial for the functionality of autonomous vehicles and the reliability of medical diagnostics. IMDEA Networks is creating solutions to minimize timing errors and developing low-power ISAC technologies suitable for various applications, from healthcare devices to smart city infrastructures.

Solving 6G Challenges: Intelligent Surfaces, AI, and High-Frequency Bandwidth

DISCO6G is addressing several technical hurdles to enable the practical deployment of 6G networks. The project targets the need for low-latency and high-precision data collection and transmission, crucial for transport and biomedical applications. One of the technological challenges involves the use of millimeter and submillimeter waves, which, while offering substantial bandwidth, are susceptible to interference.

To optimize the use of these high-frequency bands, IMDEA Networks is developing reconfigurable intelligent surfaces and refining AI algorithms to enhance signal quality. Additionally, the integration of multiple sensors, including LiDAR, radio frequency, and other technologies, is being advanced to enable more precise detection and positioning systems.

6G Biomedical Breakthroughs: Non-Invasive Diagnostics Using RF Sensing

In the field of biomedicine, DISCO6G is pushing the boundaries by developing non-invasive sensing techniques. Traditional diagnostic tests, which are often invasive and time-consuming, can be revolutionized with DISCO6Gs radio frequency-based methods that detect pathogens in real-time without physical contact. This innovation has the potential to significantly speed up and simplify the process of medical diagnostics.

Impact on Various Sectors

The implications of DISCO6G are vast and varied. In transportation, the technology will enable precise train localization, speed estimation, and passenger flow control in railway and metro systems. It will also enhance cooperative detection in vehicular networks, which is pivotal for the safety in autonomous driving.

In the healthcare sector, DISCO6G will facilitate rapid virus detection methods that forego invasive tests and enable automated patient monitoring in smart hospitals. These advancements promise to improve the efficiency of medical services and patient care.

Jess Omar Lacruz of IMDEA Networks sums up the project’s vision, stating that DISCO6G is set to redefine the future of mobile networks by providing connectivity that not only enables communication but also actively perceives and interacts with the environment. This dual capability is expected to significantly enhance the safety, healthcare, and efficiency of future infrastructures, marking a new era in mobile network evolution.


Recent Content

An unsolicited offer from Perplexity to acquire Googles Chrome raises immediate questions about antitrust remedies, AI distribution, and who controls the internets primary access point. Perplexity has proposed a $34.5 billion cash acquisition of Chrome and says backers are lined up to fund the deal despite the startups significantly smaller balance sheet and an estimated $18 billion valuation in recent fundraising. The bid includes commitments to keep Chromium open source, invest an additional $3 billion in the codebase, and preserve current user defaults including leaving Google as the default search engine. The timing aligns with a U.S. Department of Justice push for structural remedies after a court found Google maintained an illegal search monopoly, with a Chrome divestiture floated as a central remedy.
A new Ciena and Heavy Reading study signals that AI will become a primary source of metro and long-haul traffic within three years while most optical networks remain only partially prepared. AI training and inference are shifting from contained data center domains to distributed, edge-to-core workflows that stress transport capacity, latency, and automation end-to-end. Expectations are even higher for long-haul: 52% see AI surpassing 30% of traffic and 29% expect AI to account for more than half. Yet only 16% of respondents rate their optical networks as very ready for AI workloads, underscoring an execution gap that will shape capex priorities, service roadmaps, and partnership models through 2027.
South Korea’s government and its three national carriers are aligning fresh capital to speed AI and semiconductor competitiveness and to anchor a private-led innovation flywheel. SK Telecom, KT, and LG Uplus will seed a new pool exceeding 300 billion won (about $219 million) via the Korea IT Fund (KIF) to back core and foundational AI, AI transformation (AX), and commercialization in ICT. KIF, formed in 2002 by the carriers, will receive 150 billion won in new commitments, matched by at least an equal amount from external fund managers. The platforms lifespan has been extended to 2040 to sustain long-cycle bets.
NTT DATA and Google Cloud expanded their global partnership to speed the adoption of agentic AI and cloud-native modernization across regulated and dataintensive industries. The push emphasizes sovereign cloud options using Google Distributed Cloud, with both airgapped and connected deployments to meet data residency and regulatory needs without stalling innovation. The partners plan to build industry-specific agentic AI solutions on Google Agent space and Gemini models, underpinned by secure data clean rooms and modernized data platforms. NTT DATA is standing up a dedicated Google Cloud Business Group with thousands of engineers and aims to certify 5,000 practitioners to accelerate delivery, migrations, and managed services.
Lumen surpassing 1,000 customers on its Network-as-a-Service platform is a clear marker for where enterprise networking is headed. AI adoption, multi-cloud architectures, and distributed applications are pushing organizations toward on-demand, software-driven connectivity. Lumens platform bundles three core service types under a single digital experience. The platform integrates with major hyperscalers, enabling direct paths to AWS, Microsoft Azure, and Google Cloud. All can be provisioned self-service, scaled up or down based on demand, and stitched to cloud regions and third-party data centers via cloud on-ramps.
Vietnam is entering the hyperscale AI data center map, with VNPT and LG CNS positioning to meet local and regional demand. For telecom operators and enterprises, now is the time to align AI roadmaps with data center strategy: plan for high-density racks and liquid cooling, secure GPU capacity, engineer diverse connectivity, and build energy resilience. As the regions AI infrastructure forms, those who co-design workload placement, interconnect, and power from the outset will gain durable cost and performance advantages.
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025