MTC’s 5G private network offers lessons for legacy manufacturing

In collaboration with nexGWorx and MTC, BT successfully deployed a Release 15 5G network based on Nokia technology. What lessons does MTC’s 5G private network offer for legacy manufacturing?

The U.K.’s Manufacturing Technology Centre is a leader in advanced manufacturing, boasting an impressive array of automated technology and robotics systems for digitization, additive manufacturing, automation, and more. Not to mention the independent research and technological group’s primary focus on developing processes and industrial systems across multiple sectors, such as aerospace engineering and agriculture technologies, among many others.


At the 5G Manufacturing Forum, Dr. Alejandra Matamoros – Technology Manager for MTC – discussed technology transformation in the manufacturing industry and how private networks can leverage legacy environments with 5G capabilities. She explained that it’s not just creating new things but deploying this digital revolution across factories worldwide. Connectivity in the industrial world is far from uniform, which presents a great difficulty. For example, manufacturing facilities are full of various devices with different technology types, each sending data that differs drastically in format or communication channels.

In some cases, there is no data available. To make operations and processes more intelligent, it’s essential to create access to this data and address security concerns that may be caused by connecting disparate systems. Only then will potential disruptions or interference be prevented from occurring.

In collaboration with nexGWorx and MTC, BT successfully deployed a Release 15 5G network based on Nokia technology. Through the setup of modems, servers, and Multi-Access Edge Computing (MEC) connected to local radio antennas across various places at MTC using a shared access spectrum between 2.8-4.2 GHz., this network was able to provide maximum speeds of up to 100 Mbps for uplink transmissions while downlink transfers can reach 700 – 800 Mbps within 10 – 15 milliseconds latency range. What’s more impressive is that it enabled an experimental use case: an automated visual inspection system through 5G networks. MTC’s priority was introducing their engineers to the potential of 5G networks for industrial automation, computer vision, and robotic applications. Matamoros clarified that this project would also help them understand how infrastructure deployment is necessary for such use cases.

Matamoros explained that automated visual inspection is a versatile use case, as it can be found in many industries. After all, when components of various shapes and sizes have to meet design tolerances during production processes, traditional manual inspections are often time-consuming and prone to human error. Additionally, records and traceability are necessities across industrial verticals. In other words, this kind of automation has become an indispensable tool for many companies today due to its accurate results and seamless record-keeping capabilities.
MTC envisioned automated inspection of regular metal brackets to keep the complex manufacturing process running smoothly.

Knowing that a large number of individuals manufactured parts needed daily scrutiny for compliance, MTS sought ways to optimize these systems and guarantee that all components meet quality requirements. Achieving the necessary level of performance for automated visual inspection took careful planning and analysis of both the MTC environment and the requirements of the use case that MTC wanted to enable. Matamoros highlighted that there are numerous machines and metallic structures present in the area, which could potentially interfere with our network.

According to Dave Barrett, BT’s principal architect for 5G private network strategy and development, a successful foundation for this type of network begins with customer requirements. It is necessary to consider use cases alongside performance needs, such as uplink/downlink latency, the coverage area, and the number of devices needed to build an efficient system.
The complexity of constructing a resilient system is considerable. We must consider radio coverage area, capacity within the region, and connectivity between legacy systems and 5G solutions. All these pieces take time to organize effectively, but they are crucial when it comes down to designing an effective solution.

According to Andy MacKenzie, project director of nexGworx, constructing a 5G network goes beyond the technical aspects. It requires understanding why you are building it, where you’re constructing it and what purpose it will serve when completed. As part of this process, his team provided essential communication and coordination that helped each partner comprehend their needs and abilities and eventually linked them into one working system.

Before we began, Matamoros and her team worked with us to define our objectives: what were we trying to show? What did success look like? And how we would measure it when completed. This system was amongst the first of its kind ever established, so everyone had an opportunity to learn as it evolved during Covid times. Our job then became about managing progress towards remaining focused on meeting our commitments.

According to Barrett, it is vitally important when devising a new network system for any manufacturing purpose to never take anything for granted regarding how the system will be used. It’s imperative to have comprehensive discussions with the industrial partner and completely comprehend the use case’s requirements before continuing – then those specifications must remain consistent throughout development.

“Having visibility is vital,” he expressed. “When setting up networks, seeing what is happening and being proactive to solve issues without delay should be a priority.” Moreover, the operating partner must have a smooth handover and acceptance of the network. He continued, “You can develop networks that will work at an adequate level, but if you don’t set clear requirements for completion, then there could be problems later down the line.”

As 5G standards constantly advance, private 5G networks will continue to grow and expand their greenfield and legacy manufacturing offerings. We’re actively working on ways to boost performance throughput with radio frame adaptation, Release 16, 17, 18 features….and much more. According to Barrett from BT, private networks offer a tremendous variety of potential applications with 5G. From low-level telemetry data needs to highly advanced ones, this new technology can adapt according to different sites and amazingly use cases – it’s simply powerful.

Take advantage of the opportunity to watch the 5G Manufacturing Forum’s comprehensive session and additional content on demand.


Recent Content

TeckNexus is proud to announce the winners of the 2024 Private Networks Awards, celebrating outstanding achievements in private 5G, LTE, and CBRS innovations. This prestigious program honors companies, solutions, and collaborations that have transformed connectivity and redefined industry standards in sectors such as manufacturing, healthcare, smart cities, and public safety. The winners showcase how advanced private networks and strategic partnerships address complex challenges, drive innovation, and promote sustainable growth.

Award Category: Excellence in Private 5G/LTE Networks

Winner: Nokia


Nokia has been recognized with the TeckNexus 2024 Award for “Excellence in Private 5G/LTE Networks” for its transformative solutions that drive industrial digital transformation. Utilizing advanced technologies such as Nokia Digital Automation Cloud (DAC) and Modular Private Wireless (MPW), Nokia delivers secure, scalable, and high-performance connectivity tailored for Industry 4.0 applications. By addressing complex operational challenges through reliable, low-latency connectivity, AI-driven automation, and robust data security, Nokia empowers enterprises to optimize efficiency, enhance automation, and foster sustainability. With deployments across over 795+ enterprise customers and 1,500 mission-critical networks, Nokia’s innovative private wireless solutions are setting new standards for connectivity, operational excellence, and industrial growth worldwide.

Award Category: Excellence in Neutral Host Networks

Winner: Celona

Partners: Del Conca and T-Mobile


Celona’s innovative 5G LAN and Neutral Host solutions have been recognized with the TeckNexus 2024 Award for “Excellence in Neutral Host Networks” for transforming connectivity and operational efficiency at Del Conca USA, a leading manufacturer of fine Italian porcelain tiles. By addressing the limitations of legacy Wi-Fi systems, Celona deployed a robust, scalable private wireless network that significantly enhanced coverage, mobility, and operational resilience across Del Conca’s 30-acre facility. Leveraging the Citizen’s Broadband Radio Service (CBRS) spectrum, Celona’s solution delivered reliable, interference-resistant connectivity, optimizing real-time data communication for Automated Guided Vehicles (AGVs) and forklifts, thereby minimizing production delays and improving material handling efficiency. Additionally, Celona’s Neutral Host capabilities seamlessly integrated public cellular networks through a partnership with T-Mobile, providing uninterrupted indoor and outdoor connectivity for employees. This deployment not only showcased the transformative impact of Celona’s private 5G and Neutral Host solutions on manufacturing automation but also set a new benchmark for scalable, secure, and collaborative network integration across industrial environments.

Award Category: Excellence in Private Network Startups

Winner: GXC


GXC’s ONYX Platform, powered by Cellular Mesh technology, delivers scalable, seamless, and secure communication across industries. Recognized with the TeckNexus 2024 Award for “Excellence in Private Network Startups,” GXC’s proprietary Cellular Mesh technology and its ONYX Platform have established it as a frontrunner in delivering reliable, high-performance connectivity solutions tailored to meet the complex needs of enterprises.

Award Category: Excellence in Private Network Security

Winner: OneLayer


OneLayer’s innovative Zero Trust and Zero-Touch automation solutions provide unmatched security, visibility, and scalability for private LTE/5G networks. This approach has earned OneLayer the prestigious TeckNexus 2024 Award for “Excellence in Private Network Security,” recognizing their contributions to safeguarding private networks. By implementing robust security frameworks and automated device management, OneLayer empowers industries to efficiently manage and protect complex private cellular networks, enhancing network integrity and resilience through unmatched visibility, automated onboarding, and scalable security measures.

Award Category: Private Network Excellence in Generative AI Integration

Winner: Southern California Edison (SCE) & NVIDIA


Southern California Edison (SCE), in collaboration with NVIDIA, has been honored with the TeckNexus 2024 Award for “Excellence in Private Network AI and Generative AI Integration” for their transformative work in modernizing network operations through advanced AI and predictive analytics. Their initiative, Project Orca, exemplifies the power of AI-driven innovation, enhancing predictive capabilities, operational efficiency, and the reliability of critical infrastructure. This collaboration highlights how SCE and NVIDIA’s AI solutions redefine network operations, elevating performance and setting new standards for AI integration in private networks.

Download Magazine

With Subscription

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top