Private Network Check Readiness - TeckNexus Solutions

Scaling Open RAN: Real-World Deployments, Challenges & Strategic Insights

As Open RAN moves from trials to large-scale adoption, telecom giants like NTT Docomo, AT&T, and TELUS share their real-world deployment strategies. From multivendor interoperability to automation and security, this article explores key operational insights, ecosystem collaborations, and future directions in Open RAN architecture.
Open RAN: A $42M Leap Forward in Wireless Technology Innovation

As telecom operators strive for more flexible, scalable, and cost-effective network architectures, Open RAN (Radio Access Network) has become a key pillar in the evolution of mobile networks. By decoupling hardware from software and embracing open interfaces, Open RAN presents a transformative approach that empowers operators with greater choice, innovation, and vendor diversity.


Yet, deploying Open RAN at scale is not without its challenges. While the technical foundation is increasingly solid, operationalizing Open RAN across large and diverse network environments requires a strategic application of real-world experience, robust integration models, and strong ecosystem collaboration.

Unlocking the Benefits of Open RAN Architecture

At its core, Open RAN promotes interoperability between network components from different vendors by using standardized interfaces. This eliminates traditional vendor lock-in, encourages competition, and accelerates innovation.

Operators benefit from the flexibility to mix and match solutions based on regional needs, technical requirements, or deployment scenariosโ€”urban, rural, or indoor. This modular approach can significantly lower the total cost of ownership (TCO) while enabling faster rollout of new features and capabilities.

How Global Operators Are Deploying Open RAN in Live Networks

Several major telecom operators have already begun deploying Open RAN in live networks, revealing valuable insights into the opportunities and complexities involved.

NTT Docomo: Multivendor at Scale

NTT Docomo has implemented one of the worldโ€™s largest multivendor Open RAN networks. Starting with a limited vendor set, their network has grown to include four CU/DU vendors and over 30 types of radio units, deployed nationwide to support more than 50 million 5G subscribers.

This level of scale was achieved through meticulous testing, configuration alignment, and process optimization. What once took six months to integrate a new vendor can now be done in a weekโ€”showcasing the maturity of Open RAN standards and tools.

AT&Tโ€™s:ย : Embracing Open Network Management

Rather than focusing solely on open fronthaul, AT&T is prioritizing open network management. Their approach centers on building a robust Service Management and Orchestration (SMO) platform to unify the control of RAN, small cells, and third-party applications across the network.

This platform-driven model enables partners to plug into the network more easily, helps reduce operational complexity, and supports large-scale automation. It also allows for the integration of new radio and baseband vendors, enhancing flexibility without compromising reliability.

Vodafone‘s Innovative Implementation Strategies

Vodafone has been implementing Open RAN in various European countries and Africa, focusing on rural and underserved areas. Their approach demonstrates how Open RAN can be used to bridge the digital divide by providing cost-effective network solutions in regions that are typically less attractive for heavy infrastructure investments.

TELUS: Full Transition to Open RAN and vRAN

TELUS is taking a bold step by committing to a complete Open RAN and vRAN transformation across its 4G and 5G networks. By 2029, the operator plans to operate 100% of its RAN using virtualized, multivendor infrastructure.

Already covering 5% of its network, TELUS expects to reach 18% by the end of the year and 50% by 2027. Their strategy includes retaining legacy radios while converting basebands to virtualized systems using interface converters. This minimizes the need for costly tower upgrades while maximizing reuse of existing assets.

Qualcomm and the Role of Semiconductors

For Open RAN to succeed, it must be underpinned by high-performance, power-efficient silicon. Qualcomm has demonstrated that chipset innovation is critical to supporting the scale and economics of Open RAN.

Deployments such as a nationwide Open RAN rollout in Vietnamโ€”spanning more than 20,000 sitesโ€”highlight how cutting-edge semiconductors can deliver Massive MIMO and carrier-grade performance, even in cost-sensitive markets.

Key Challenges in Scaling Open RAN: Integration, Security & Operations

Despite growing adoption, Open RAN introduces several challenges that operators must carefully manage:

Integration & Interoperability

While Open RAN standards provide a common framework, vendor interpretation can vary. Integrating components from different suppliers requires thorough validation, extensive testing, and ongoing optimization to ensure seamless functionality.

Securityย  in a Disaggregated World

Open RAN introduces more interfaces and integration points, increasing the attack surface. As networks become more software-defined and cloud-native, securing the infrastructureโ€”through encryption, intrusion detection, and anomaly monitoringโ€”is essential.

Security must be embedded not only in interfaces but across the full software and hardware stack, including third-party apps and virtualized infrastructure.

Operational Complexity and Automation

Introducing multiple vendors brings greater flexibility but also increases operational complexity. Efficient orchestration, lifecycle management, and observability are critical to avoiding increased OPEX.

Mature implementations leverage automated deployment pipelines, SMO platforms, and AI-driven tools to simplify operations and support rapid scale.

Strategic Pillars for Successful Open RAN Deployment

The journey to large-scale Open RAN adoption is shaped by a few key strategic pillars:

1. Ecosystem Collaboration

Open RANโ€™s success hinges on a strong and cooperative vendor ecosystem. Strategic partnerships with software, hardware, and cloud providers allow operators to tap into pre-integrated, validated solutions that reduce time-to-market and ensure stability.

2. Standardization and Compliance

Global organizations such as the O-RAN Alliance and the Telecom Infra Project (TIP) continue to advance the maturity of specifications across fronthaul, SMO, and vRAN. Adhering to these standards ensures interoperability and accelerates the onboarding of new vendors.

3. Flexibility in Integration Models

Operators vary in their willingness and ability to act as system integrators. Larger players may take a lead role in integration, while others may rely on vendors or neutral hosts to deliver turnkey Open RAN solutions. The choice depends on internal capabilities, scale, and deployment goals.

Future Outlook: Open RAN as a Foundation for Modern Mobile Networks

Open RAN represents more than a technical shiftโ€”it signals a new operational mindset. Networks are becoming more open, more programmable, and more collaborative. As the technology matures and deployment experience deepens, Open RAN is moving beyond experimentation to become a practical foundation for modern mobile infrastructure.

From dense urban metros to remote rural regions, operators are finding ways to adapt Open RAN to their needsโ€”paving the way for more inclusive, cost-effective, and agile network growth.

How Operators Can Realize the Promise of Open RAN

The evolution of Open RAN is accelerating. As deployments scale, the lessons learned from early adopters are becoming blueprints for success. Whether the goal is reducing cost, improving flexibility, expanding vendor diversity, or enhancing performance, Open RAN is proving to be a viable path forward.

Achieving full-scale deployment requires a combination of technological maturity, operational discipline, and trusted collaboration. With the right strategies and partners in place, Open RAN can deliver on its promiseโ€”and redefine the future of wireless networks.


Recent Content

Automotive digitization now hinges on 5G’s ability to deliver reliable, low-latency, and scalable connectivity that 4G/LTE cannot sustain for safety-critical use cases. Advanced driver assistance, cooperative perception, and remote operations require millisecond-class response and deterministic reliability across dense traffic conditions. 5G Standalone (SA) with Ultra-Reliable Low-Latency Communications (URLLC), improved positioning, and enhanced uplink meets these thresholds, enabling vehicles and infrastructure to exchange time-sensitive data continuously. This is the foundation for C-V2X, high-fidelity telematics, and closed-loop control that 4G/LTE struggles to support consistently. 5G enables dynamic traffic orchestration, energy-aware routing for EVs, and advanced safety services that can reduce incidents and congestion.
Google will pay a US$35.8 million (A$55 million) penalty and change how it structures Android default search agreements with Australian carriers and OEMs. The Australian Competition and Consumer Commission (ACCC) alleged that Googles contracts with Telstra and Optus from December 2019 to March 2021 blocked rival search engines on carrier-sold Android devices via platform-wide default settings and revenue-sharing incentives. Google admitted the conduct likely lessened competition and agreed to court-enforceable undertakings to remove restrictions that mandated Google Search as the exclusive, out-of-the-box option across search access points (browser defaults, widgets, and in-phone settings).
The 4.44.94 GHz range offers the cleanest mix of technical performance, policy feasibility, and global alignment to move the U.S. ahead in 6G. Midband is where 6G will scale, and 4 GHz sits in the sweet spot. A contiguous 500 MHz block supports wide channels (100 MHz+), strong uplink, and macro coverage comparable to C-Band, but with more spectrum headroom. That translates into better spectral efficiency and a lower total cost per bit for nationwide deployments while still enabling dense enterprise and edge use cases.
Palo Alto Networks PAN-OS 12.1 Orion steps into this gap with a quantum-ready roadmap, a unified multicloud security fabric, expanded AI-driven protections and a new generation of next-generation firewalls (NGFWs) designed for data centers, branches and industrial edge. The release also pushes management into a single operational plane via Strata Cloud Manager, targeting lower operating cost and faster incident response. PAN-OS 12.1 automatically discovers workloads, applications, AI assets and data flows across public cloud and hybrid environments to eliminate blind spots. It continuously assesses posture, flags misconfigurations and exposures in real time and deploys protections in one click across AWS, Azure and Google Cloud.
Beijing’s first World Humanoid Robot Games is more than a spectacle. It is a live systems trial for embodied AI, connectivity, and edge operations at scale. Over three days at the Beijing National Speed Skating Oval, more than 500 humanoid robots from roughly 280 teams representing 16 countries are competing in 26 events that span athletics and applied tasks, from soccer and boxing to medicine sorting and venue cleanup. The games double as a staging ground for 5G-Advanced (5G-A) capabilities designed for uplink-intensive, low-latency, high-reliability robotics traffic. Indoors, a digital system with 300 MHz of spectrum delivers multi-Gbps peaks and sustains uplink above 100 Mbps.
India has cleared a high-capacity semiconductor fabrication plant slated to produce up to 50,000 300mm wafers per month, a cornerstone move to localize chip supply for telecom, cloud, automotive, and industrial electronics. India’s electronics and IT leadership confirmed plans for a large-scale silicon fab with a targeted capacity of 50,000 wafers per month. The project is being led by Tata Group, with technology partnership support widely expected from a specialty foundry player, aligning with earlier approvals for mature-node logic and power processes. The fab is planned in Gujarat’s industrial corridor, building on India’s recent momentum in assembly, test, and packaging investments.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025