Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle

When Apple declared that LLMs can't reason, they forgot one crucial detail: a hammer isn't meant to turn screws. In our groundbreaking study of Einstein's classic logic puzzle, we discovered something fascinating. While language models initially stumbled with pure reasoning - making amusing claims like "Plumbers don't drive Porsches" - they excelled at an unexpected task.
Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle
Image Credit: SmartR AI

Introduction to LLMs and the Reasoning Debate

A recent Apple publication argued that Large Language Models (LLMs) cannot effectively reason. While there is some merit to this claim regarding out-of-the-box performance, this article demonstrates that with proper application, LLMs can indeed solve complex reasoning problems.

The Initial Experiment: Einstein’s Puzzle


We set out to test LLM reasoning capabilities using Einstein’s puzzle, a complex logic problem involving 5 houses with different characteristics and 15 clues to determine who owns a fish. Our initial tests with leading LLMs showed mixed results:

  • OpenAI’s model correctly guessed the answer, but without clear reasoning
  • Claude provided an incorrect answer
  • When we modified the puzzle with new elements (cars, hobbies, drinks, colors, and jobs), both models failed significantly

Tree of Thoughts Approach and Its Challenges

We implemented our Tree of Thoughts approach, where the model would:

  1. Make guesses about house arrangements
  2. Use critics to evaluate rule violations
  3. Feed this information back for the next round

However, this revealed several interesting failures in reasoning:

Logic Interpretation Issues

The critics often struggled with basic logical concepts. For example, when evaluating the rule “The Plumber lives next to the Pink house,” we received this confused response:

“The Plumber lives in House 2, which is also the Pink house. Since the Plumber lives in the Pink house, it means that the Plumber lives next to the Pink house, which is House 1 (Orange).”

Bias Interference

The models sometimes inserted unfounded biases into their reasoning. For instance:

“The Orange house cannot be in House 1 because the Plumber lives there and the Plumber does not drive a Porsche.”

The models also made assumptions about what music Porsche drivers would listen to, demonstrating how internal biases can interfere with pure logical reasoning.

A Solution Through Code Generation

While direct reasoning showed limitations, we discovered that LLMs could excel when used as code generators. We asked SCOTi to write MiniZinc code to solve the puzzle, resulting in a well-formed constraint programming solution. The key advantages of this approach were:

  1. Each rule could be cleanly translated into code statements
  2. The resulting code was highly readable
  3. MiniZinc could solve the puzzle efficiently

Example of Clear Rule Translation

The MiniZinc code demonstrated elegant translation of puzzle rules into constraints. For instance:

% Statement 11: The man who enjoys Music lives next to the man who drives Porsche
% Note / means AND in minizinc
constraint exists(i,j in 1..5)(abs(i-j) == 1 / hobbies[i] = Music / cars[j] = Porsche);

If you would like to get the full MiniZinc code, please contact me.

Implications and Conclusions: Rethinking the Role of LLMs

This experiment reveals several important insights about LLM capabilities:

  1. Direct reasoning with complex logic can be challenging for LLMs
  2. Simple rule application works well, but performance degrades when multiple steps of inference are required
  3. LLMs excel when used as agents to generate code for solving logical problems
  4. The combination of LLM code generation and traditional constraint solving tools creates powerful solutions

The key takeaway is that while LLMs may struggle with certain types of direct reasoning, they can be incredibly effective when properly applied as components in a larger system. This represents a significant advancement in software development capabilities, demonstrating how LLMs can be transformative when used strategically rather than as standalone reasoning engines.

This study reinforces the view that LLMs are best understood as transformational software components rather than complete reasoning systems. Their impact on software development and problem-solving will continue to evolve as we better understand how to leverage their strengths while working around their limitations.


Recent Content

Singtel launches 5G+, introducing nationwide network slicing for both consumers and enterprises, a global first. This upgrade brings faster speeds, lower latency, stronger indoor coverage, and real-time cyber protection to over 1.5 million users. Singtel 5G+ enhances mobile connectivity with the 700MHz spectrum, priority plans, and app-based slicing for business-critical apps, aligning with Singapore’s Smart Nation goals.
 Virgin Media O2 and Daisy Group have joined forces to form a £1.4B B2B telecom and IT services powerhouse, targeting UK enterprises with an integrated offering that includes private 5G, cloud, AI, and cybersecurity solutions. With Virgin Media O2 holding a 70% stake and Daisy 30%, the new entity aims to accelerate enterprise digital transformation, drive operational synergies, and compete against both traditional telcos and cloud-first players in a fast-evolving market.
OpenAI’s Stargate project—a $500B plan to build global AI infrastructure—is facing delays in the U.S. due to rising tariffs and economic uncertainty. While the first phase in Texas slows, OpenAI is shifting focus internationally with “OpenAI for Countries,” a new initiative to co-build sovereign AI data centers worldwide. Backed by Oracle and SoftBank, Stargate is designed to support massive AI workloads and reshape global compute power distribution.
Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425–7.125 GHz) for mobile use, citing the spectrum’s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europe’s digital leadership and hinder next-generation connectivity infrastructure.
Dirty data in data centers undermines everything from AI accuracy to energy efficiency. With poor metadata, data drift, and dark data hoarding driving up costs and emissions, organizations must adopt DataOps, metadata tools, and a strong data culture to reverse the trend. Learn how clean data fuels smarter automation, compliance, and sustainability.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top