IS-Wireless Powers University of York’s Research with Private 5G Network

IS-Wireless has deployed a Private 5G network at the University of York to support advanced telecommunications research. The network, based on Open RAN technology, will facilitate projects like YO-RAN and REACH, driving innovation and efficiency in mobile communications.
IS-Wireless Powers University of York Research with Private 5G
Image Credit: Is-Wireless

IS-Wireless Deploys Private 5G Network at the University of York

IS-Wireless, a leading provider of 5G solutions, has announced the deployment of its Private 5G network at the University of York. This deployment aims to support the university’s research into new telecommunications technologies. This project marks another significant rollout in the UK by the Polish company. Selected through a competitive process, IS-Wireless will provide essential components of the 5G network, including the Near-Real Time RIC, O-CU, and O-DU, along with robust support services.

Overcoming Challenges in Advanced 5G Network Implementation


The university faced the challenge of needing a highly reliable and advanced 5G network to support its research projects. This network must handle the demands of cutting-edge research while being flexible enough to integrate with new technologies and methodologies. Additionally, the implementation needed to adhere to the Open RAN model to ensure future-proofing and interoperability.

Tailored 5G Solutions for Cutting-Edge Research

IS-Wireless provided a comprehensive Private 5G network tailored to the university’s needs. The installation includes key 5G components such as the Near-Real Time RIC, O-CU, and O-DU. This setup will be used by the university and its partners for two primary research projects, YO-RAN and REACH. These projects focus on enhancing mobile networks’ efficiency and accessibility using Open RAN technology. The university will also leverage this network to develop and test xApps aimed at improving energy efficiency and network control.

Expert Endorsements Highlight Network’s Impact on Research

Professor David Grace from the School of Physics, Engineering and Technology at the University of York emphasized the significance of these projects: “The Private 5G network provided by IS-Wireless will enable us to develop and test new solutions that will enhance Open RAN-based mobile communications worldwide.” This statement underscores the critical role of the network in advancing telecommunications research.

Why IS-Wireless’s Open RAN Model is Ideal for Innovation

The choice of IS-Wireless was driven by its proven expertise and comprehensive 5G solutions. The company’s Private 5G network is built on the Open RAN model, featuring Liquid RAN, which focuses on efficient resource use. This technology aligns with the university’s goals of innovation and sustainability.

Key Benefits of the Private 5G Network Deployment

The deployment offers numerous benefits:

  • Compatibility with O-RAN Alliance standards ensures system interoperability and future-proofing.
  • Training and maintenance services support optimal operation.
  • Remote and instant installation enables quick deployment.
  • xApp SDK provides tools for developing and testing applications.
  • Openness to recommended modifications in the RIC enhances flexibility.

Driving Global Telecommunications Innovation

This deployment is a significant step in advancing telecommunications research. The Private 5G network at the University of York will facilitate groundbreaking research that could lead to more efficient and accessible mobile networks globally. The focus on Open RAN technology will also drive innovation in network infrastructure.

IS-Wireless: Leading the Charge in 5G Research Support

IS-Wireless plays a pivotal role in this initiative.

Artur Chmielewski, Head of Sales at IS-Wireless, expressed the company’s enthusiasm: “We are excited to work with one of the world’s top universities and a member of the prestigious Russell Group. The IS-Wireless Private 5G network will be a great tool for research, supported by our experience from many European Union-level R&D projects.”

Collaborative Efforts in Advancing Telecommunications Research

The university and its partners are crucial in utilizing the network for research and development. Their collaboration will focus on creating and testing new applications to enhance network performance and efficiency.

Current Progress of the Private 5G Network Deployment

The deployment of the IS-Wireless Private 5G network at the University of York is currently underway. This network will soon support the YO-RAN and REACH research projects, marking a new chapter in telecommunications research.

The installation and initial testing phases are expected to be completed within the next few months. Full operational status is anticipated by the end of the year, enabling the research projects to commence in earnest.

Positive Feedback from Academia and Telecommunications Experts

The University of York and IS-Wireless have received positive feedback from the academic and telecommunications communities. This collaboration is seen as a significant step toward innovative research and development in the field of telecommunications.

By deploying its Private 5G network at the University of York, IS-Wireless is not only supporting critical research but also demonstrating the potential of Private Networks to drive technological advancements in academia and beyond.


Recent Content

EE has deployed the UK’s first 5G Standalone (SA) network at Wembley Stadium, setting a new benchmark for sports venue connectivity. This upgrade delivers faster speeds, ultra-low latency, and enhanced capacity, ensuring seamless live streaming, mobile transactions, and digital fan experiences. As part of EE’s nationwide 5G expansion, this deployment paves the way for smart stadium innovations and next-generation event experiences.
Vodafone Spain is deploying a private 5G network at the Muga Potash Mine in collaboration with Geoalcali. This initiative enhances safety, automation, and operational efficiency in underground mining by enabling real-time data access, remote-controlled machinery, and IoT-powered monitoring. With low-latency connectivity and AI-driven automation, the project sets a new benchmark for smart mining in Spain.
Celona and stc Group have announced a strategic partnership to expand private 5G adoption in Saudi Arabia, Kuwait, and Bahrain. This initiative enhances business efficiency through secure, scalable, and high-performance wireless connectivity. Designed for industries like oil and gas, logistics, manufacturing, and mining, the solution addresses key challenges of traditional networks, reducing operational costs and driving digital transformation.
LCRA and Ericsson are set to transform Texas’ utility sector with a private LTE network spanning 68 counties. This initiative strengthens cybersecurity, improves real-time communications, and enhances grid reliability. By leveraging Ericsson’s 5G-ready technology, LCRA ensures a future-proof infrastructure for mission-critical operations, benefiting electric cooperatives, municipalities, and other essential services.
Vodafone has completed the world’s first satellite-based video call using a standard 4G or 5G smartphone—no special hardware required. This milestone, achieved with AST SpaceMobile, demonstrates the power of direct-to-smartphone satellite connectivity. By 2026, Vodafone plans to roll out this service commercially across Europe, bridging mobile coverage gaps in rural and remote regions. Learn how this technology is set to redefine mobile broadband and global communication.
Europe faces mounting competition in the global tech race, with 5G and advanced digital infrastructure playing a pivotal role. The GSMA’s Mobile Economy Europe 2025 report highlights how 5G adoption, AI innovation, and targeted policy reforms can drive €164 billion in economic growth by 2030.

Download Magazine

With Subscription

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top