FCC’s Proposed CBRS Changes Face Strong Opposition from 25 Organizations

The FCC’s proposed CBRS changes are facing backlash from 25 organizations, including Amazon, Comcast, and Lockheed Martin, who argue that increased power levels and relaxed emissions limits would harm rural broadband, private networks, and competition. The proposal risks turning CBRS into a high-power cellular band, benefiting major carriers at the expense of small businesses, industrial users, and public access initiatives. As the debate intensifies, the future of CBRS and its diverse ecosystem remains uncertain.
FCC loses control over the US spectrum auctions

FCC’s Proposed Changes to CBRS Face Industry Pushback

The Citizens Broadband Radio Service (CBRS) band has emerged as a critical platform for innovation, fostering a diverse ecosystem of applications ranging from rural broadband to private industrial networks. However, proposed changes to the CBRS framework by the Federal Communications Commission (FCC) are facing significant opposition from 25 organizations, who argue these alterations would fundamentally undermine the purpose, success, and competitive landscape of CBRS.

Why CBRS Is Critical for Innovation and Competition

In a letter addressed to FCC Chairman Brendan Carr, these organizations express serious concerns about proposals to increase power levels for CBRS devices and relax emissions limits. They argue that such changes would transform CBRS into yet another high-power, macro cellular band, abandoning the original vision of a lower-power, small-cell band designed to support broad access and diverse applications. This shift, they contend, would benefit large carriers at the expense of smaller innovators and the diverse use cases CBRS was designed to serve.

Key Industries That Rely on CBRS and May Be Affected

The core issue is the potential disruption to the vibrant CBRS ecosystem. The letter highlights the wide range of use cases already benefiting from CBRS, demonstrating its versatility and impact:

  • Rural Broadband Deployment: CBRS has proven crucial in bridging the digital divide, providing cost-effective broadband access to underserved rural communities. Increased power levels could negatively impact these deployments, potentially disrupting existing services and hindering future expansion.
  • Competitive Mobile Services: CBRS has enabled smaller carriers and new entrants to compete with established mobile operators, fostering competition and driving innovation in the mobile market. The proposed changes could stifle this competition, consolidating power in the hands of larger players.
  • Manufacturing and Industrial Private Networks: Industries are leveraging CBRS to create private networks for automation, robotics, and other critical applications, increasing efficiency and productivity. Changes to the framework could jeopardize these deployments and hinder the growth of Industry 4.0.
  • Transportation and Logistics Connectivity: Airports, shipping terminals, and other transportation hubs rely on CBRS for seamless connectivity, supporting everything from baggage handling to passenger services. The proposed changes could disrupt these critical operations.
  • School and Library Access: CBRS has been instrumental in providing internet access to schools and libraries, particularly in underserved communities. The potential disruption to these services would have a significant impact on educational equity.

The Potential Impact of the FCC’s CBRS Proposal


The proposed changes, the letter contends, would jeopardize these existing deployments and stifle future innovation. Furthermore, they would render much of the substantial work already invested in CBRS development – a decade-long collaboration between the FCC, federal agencies, and industry – effectively wasted. This includes ongoing efforts to expand the unencumbered portion of the spectrum band, a critical process involving the NTIA, the U.S. Navy, and the FCC. This collaborative effort ensures both commercial viability and national security requirements are met.

Beyond the technical concerns, the letter raises concerns about the potential for these changes to create an uneven playing field and stifle competition. They argue that the ultimate result could be a return to reliance on “off-the-shelf managed solutions offered by the largest carriers,” limiting the ability of smaller players to innovate and compete. This implies a potential power grab by larger telecommunications companies, potentially at the expense of smaller businesses, organizations, and the broader public. The letter suggests the changes would undermine the FCC’s bipartisan vision for CBRS as a lower-power, small-cell band that promotes competition and broad access.

A Coalition of Opposition: Who Is Fighting the CBRS Changes?

The signatories of the letter represent a diverse cross-section of stakeholders, demonstrating the widespread concern about the potential negative impacts of the proposed changes:

  • Tech giants: Amazon and Hewlett Packard Enterprise
  • Cable and internet providers: Charter, Comcast, and Cox
  • Public access organizations: American Library Association and the Schools, Health & Libraries Broadband (SHLB) Coalition
  • Industrial players: Deere & Company and Lockheed Martin
  • Wireless industry associations: WISPA

What’s Next for CBRS? The Future of Wireless Innovation at Risk

This broad coalition underscores the significant opposition to the proposed changes. They are urging the FCC to reconsider these proposals and protect the CBRS framework, ensuring its continued role in driving innovation, expanding access to critical connectivity, and promoting competition in the telecommunications market. The future of CBRS, and the diverse ecosystem it supports, hangs in the balance. The FCC’s decision will have long-lasting implications for the future of connectivity in the United States.


Recent Content

YYC Calgary International Airport, in partnership with TELUS, has launched Canada’s first 5G private wireless network, transforming airport operations with real-time IoT tracking, AI-driven automation, and ultra-secure connectivity. This 10-year initiative enhances passenger experience, baggage handling, and airport security, setting a new benchmark for smart airports.
DNB and EDOTCO have successfully deployed 5G In-Building Solutions (IBS) at KLIA and KLIA2, enhancing connectivity for passengers, businesses, and airport operations. This upgrade supports high-speed, low-latency networks, enabling smart airport solutions such as autonomous vehicles, AI-powered security, and digital retail. The initiative aligns with Malaysia’s push for digital transformation and its ASEAN Chairmanship goals.
JLR is transforming automotive manufacturing by deploying Ericsson Private 5G at its Solihull plant, enabling AI-driven automation, real-time IoT connectivity, and enhanced production efficiency. This Industry 4.0 transformation supports AGVs, smart sensors, and real-time analytics, ensuring faster, smarter, and more flexible vehicle production. Learn how JLR is leading the next era of digital manufacturing.
The Lower Colorado River Authority (LCRA) is partnering with Ericsson to deploy a private LTE network across 68 Texas counties, ensuring enhanced grid security, real-time communications, and future 5G readiness. This next-generation infrastructure will support electric cooperatives, municipalities, and critical services, reducing cybersecurity risks and improving operational efficiency for utilities statewide.
SailGP is enabling high-speed sailing with Ericsson Private 5G and Edge Computing, ensuring real-time race analytics, seamless connectivity, and immersive fan engagement. With Cradlepoint edge routers in each F50 catamaran, teams process over 53 billion data points per race day, optimizing performance and ensuring fairness. This 5G-powered digital transformation sets a new benchmark for sports connectivity.
Oulu University Hospital has deployed Europe’s first Private 5G Standalone (SA) network, revolutionizing healthcare with real-time patient monitoring, AI-assisted imaging, and augmented reality (AR) for surgery. Built by Boldyn Networks using Nokia Modular Private Wireless (MPW) technology, this high-speed, ultra-reliable network ensures seamless data flow, improved diagnostics, and enhanced patient safety. Learn how 5G is shaping the future of smart hospitals.
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top