6G: The Role of Brain-Inspired Computing by King’s Engineers

6G Technology: The Role of Brain-Inspired Computing by King's Engineers" highlights the groundbreaking research that aims to revolutionize wireless communications. By using neuromorphic computing, the research seeks to provide faster, more energy-efficient, and AI-integrated 6G telecommunications, potentially transforming industries such as mobile healthcare, telecommunications, and robotics.
Engineers from King's College Use Brain-Like Computing for Better 6G Technology

Two engineers from King’s College, London, are venturing into a promising research project that focuses on neuromorphic computing, a form of computing inspired by the functioning of the human brain, to enhance wireless technology drastically. This initiative is backed by significant scientific entities – the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the National Science Foundation (NSF) in the United States, indicating the importance and potential of the project.


The fundamental goal of this research is to significantly enhance the speed and energy efficiency of computing and wireless telecommunications. By achieving these improvements, there will be a major positive impact across various industries, especially mobile healthcare, telecommunications, and robotics. The approach taken here emphasizes a higher level of artificial intelligence (AI) integration into wireless communications, offering a vast array of possibilities in service improvements and user experience enhancements.

The primary team leading this initiative consists of an international collaboration of high-profile academics. Professor Osvaldo Simeone and Dr. Bipin Rajendran from the Department of Engineering at King’s College are working in conjunction with Professor Vincent Poor from Princeton University. They are focusing on how neuromorphic computing can be effectively leveraged for the more efficient delivery of information across telecommunications networks. This could potentially underpin the development of revolutionary services and applications in the upcoming 6G networks.

As highlighted by Professor Simeone, the recent widespread implementation of 5G has already marked a significant transition in telecommunications systems. The global system is evolving to facilitate the transfer of intelligence between machines better. Despite this progress, Simeone pointed out that current systems still encounter limitations. In particular, conventional communication systems are built on a framework of transmitting and storing information in ‘bits,’ which restricts their ability to adapt to new situations or optimize their resource consumption based on the specific nature of the information being exchanged.

Dr. Rajendran further explained the characteristics of neuromorphic systems. These systems are engineered to mimic the behavior of neural networks found in the human brain. One of the key techniques used in this approach involves Spiking Neural Networks (SNNs) that transmit information through the generation of ‘spikes.’ This operational model allows for highly efficient, event-driven computations as it processes data only when necessary.

The team believes that neuromorphic computing has several distinct advantages that make it superior to traditional computing. Unlike conventional computers, these neuromorphic systems are designed to learn and adapt in real time. Additionally, they are noted for their exceptional energy efficiency. When these factors are combined, they present a compelling case for the incorporation of neuromorphic computing within telecommunications. The introduction of this technology in mobile devices could lead to the provision of sophisticated AI tools, better services, and a much more customized experience based on user requirements.

To push this frontier technology forward, Professor Simeone and Dr. Rajendran have engaged in collaborative efforts with renowned industrial partners, including Intel Labs, NVIDIA, and AccelerComm. With the collective knowledge and experience of these industrial leaders, the King’s researchers aim to explore the core principles, algorithms, and design techniques involved in the creation of neuromorphic communications, pushing the boundaries of what’s currently achievable in telecommunications technology.


Recent Content

The Department of Telecommunications (DoT) has announced the 5G Innovation Hackathon 2025, a six-month competition to drive 5G-powered solutions across industries. Open to students, startups, and professionals, the hackathon will focus on AI, IoT, smart cities, and next-gen connectivity innovations. Participants will receive funding, mentorship, and access to 100+ 5G Use Case Labs. Winners will showcase their solutions at India Mobile Congress 2025.
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality. Discover key insights, real-world case studies, and strategic actions for telecom leaders. Download the Full Report Now to stay ahead in AI-powered service assurance.
Dive into our in-depth coverage of MWC 2025, highlighting the latest innovations in 5G, AI, IoT, and more. Discover how industry leaders are shaping the future of technology with groundbreaking announcements and developments unveiled during the event.
At MWC 2025 Keynote 12: Future of Work and Economic Growth, industry leaders explored how AI, talent shortages, and startup growth are reshaping global markets. From Europe’s role in applied AI to the importance of scaling startups internationally, the discussions offered crucial insights for entrepreneurs, investors, and tech professionals. Discover key takeaways on AI-driven industries, workforce transformation, and economic innovation. Featuring Euan Blair (Multiverse), Saadia Zahidi (WEF), Yoram Wijngaarde (Dealroom.co), Renate Nikolay (European Commission), and Jordi Romero (Factorial), this session explores workforce transformation, AI’s role in labor markets, and strategies to boost Europe’s innovation and competitiveness.
At MWC 2025 Keynote 11: Disinformation, Trust & Security, leading experts explore the growing challenges of AI-driven misinformation, online safety, and trust in the digital age. Featuring Ross Frenett (Moonshot), Nina Dos Santos (Ctrl Alt Deceit Podcast), Sachin Dev Duggal (Builder.ai), Marieke Snoep (KPN), and Boris Nihom (Dentsu Benelux), this session covers misinformation detection, media literacy, and corporate responsibility in building a safer internet.
At MWC 2025 Keynote 10: Innovation in Action, top industry leaders discussed how AI is transforming media, journalism, and enterprise automation. Featuring Jessica Sibley (TIME), Nicholas Johnston (Axios), and Bret Taylor (Sierra), the session explored AI-powered newsrooms, the ethical implications of AI-driven content, and the rise of AI agents in business operations. Learn how AI is reshaping the future of work and media while maintaining human oversight and editorial integrity.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top