Private Network Check Readiness - TeckNexus Solutions

5G RedCap for IoT: Why Low-Power Devices Must Transition from 4G

As 5G expands, reduced-capability (RedCap) and enhanced RedCap (eRedCap) IoT devices face pressure to transition from 4G. But adoption has lagged due to price and value challenges. This article explores why OEMs are holding back, the role of low-power DSP modem platforms like Ceva’s, and how software-defined radio and flexibility are key to unlocking 5G’s potential in high-volume, low-bandwidth IoT applications.
5G RedCap for IoT: Why Low-Power Devices Must Transition from 4G

It is easy to assume that every application aiming for cellular connectivity must want to shoot for 5G, because 5G provides bigger, faster, better communication options than earlier generations like 4G. This view is certainly correct for the high bandwidth use models which have captured popular imagination: mobile phone, mobile gaming, streaming video, etc. This high-end segment represents a significant class of 5G targets; however it is important to remember that 5G also aims at supporting applications needing much smaller bandwidth but requiring highly competitive area, power, and performance profiles. This is a critical high-volume segment for 5G to capture, not only to help advance communication abilities for such applications but also to encourage growth and further investment in 5G infrastructure as a whole. 

Why 5G RedCap IoT Devices Are Key to 5G Network Growth


Rationally it is obvious that there should eventually be many, many more IoT devices than smartphones, VR headsets, and other devices requiring high bandwidth support. But real use cases today bring home that adoption isn’t just a rational exercise. In China, traffic lights in cities transmit status (and perhaps waiting traffic info); this information can be picked up by apps like Baidu Maps or Waze to guide route-planning on the navigation map in your car. In dense traffic, access to such information can make an important difference to how quickly you get to your destination. The device in the traffic lights doesn’t need to transmit much data, or to update every millisecond; Reduced capability communication is all that is needed. 

There are other use-cases which may in some cases demand a little more bandwidth but still not much. Wearables such as watches, or health monitors are obvious examples. Some, running on batteries, are very power constrained. Others (like traffic lights) can tap into utility power but demand cost-effective solutions for wide-scale deployment. 

 The 3GPP standardization organization planned for needs like this through their RedCap (reduced capacity) simplified use-case, later adding the eRedCap use case for even higher bandwidths. These provide an easy mapping, from popular 4G/LTE categories in use today to comparable capabilities in the 5G standard. 

Why 5G RedCap Adoption Lags in High-Volume IoT Devices

So far, so good – an easy migration path to use-cases with competitive power profiles and cost-effective deployment. So why hasn’t this class of applications been jumping over to 5G? The non-handset IoT market is forecasted at 600-800M units per year, many/most currently on 4G. Investment in infrastructure has moved from 4G to 5G so you would think that IoT product builders should follow, not least for futureproofing. Equally important, infrastructure investment is predicated on this high traffic volume switching to 5G. 

There are two problems. First, 5G has little new benefits to offer this class of products beyond futureproofing, so it must at least show price parity with 4G equivalents, something that hasn’t been apparent so far. Second, many IoT OEMs saw opportunity in the reduced capability sector a few years ago, triggering a surge in new products with proprietary modems, all coming to market around two years ago. Inevitably over-supply provoked intense competition and price pressure, in a scramble to remain viable and relevant. Naturally under these circumstances IoT OEMs have concentrated on near-term business optimization rather than longer-term objectives. That has larger consequences; the high-volume RedCap/ eRedCap segment of the 5G market won’t be motivated to switch quickly to 5G unless IoT OEMs can find differentiation and value advantage in making that switch sooner. 

Enabling 5G RedCap Success: How Flexible Modems Can Add Value for IoT OEMs

Futureproofing is still a powerful argument for making the switch to 5G – no-one wants to build a product/product-line likely to be obsolete in a few years when 5G connectivity ultimately becomes unavoidable. However, a switch now must also serve the near-term need for added value and differentiation. 

IoT OEMs are already debating a variety of strategies around modems, from mostly hardwired solutions for highest performance, to SDR (software defined radio) for maximum flexibility and further future proofing, or intermediate architectures with varying hardware/software partitioning choices. Perhaps we will see winners at multiple points in this spectrum. What is certain is that they all need 5G RedCap/eRedCap platforms offering a range of solutions with much lower area (and therefore cost) and/or higher performance than their current (4G) solutions, and with maximum flexibility to support their own innovations to further differentiate. 

These constraints suggest need for a family of modem solutions, providing more competitive area and performance options to support chip vendors and OEM tradeoffs in area, power, and performance. Some level of software flexibility, boosted by vector processing, will be important in any selected architecture to stay current as the 3GPP standard continues to evolve. The fancier features of 5G may not be important in this sector today but at least some (security for example) are likely to become important to add differentiation in future releases. 

Also important, an emerging and juicy opportunity for IoT OEMs is in applications requiring satellite network support (non-terrestrial networks – NTN). These are incredibly important for remote deployment in agriculture, wildfire and first responder services in disaster areas where conventional cellular support may be unavailable. NTN support places further demand on modems, an important factor to keep in mind even while dealing with near-term market realities. 

With the right strategy and the right modem platform, it is possible to win in the short-term in this challenging market and to win big in the long-term. If these problems sound familiar and you are intrigued about a better path forward, checkout our high-efficiency low-power vector DSP HERE, and give us a call. 


Recent Content

A new joint solution from Rohde & Schwarz (R&S) and the Taiwan Space Agency (TASA) consolidates electromagnetic compatibility (EMC) and antenna measurements into a single, production-grade test chamber, signaling a shift in how satellite payloads will be validated for Non-Terrestrial Network (NTN) and mission-critical services. By integrating both disciplines in one chamber, TASA can validate RF performance, emissions, and immunity under consistent test conditions and configurations, improving time-to-launch and de-risking interoperability with terrestrial networks. The TASA deployment combines R&S hardware, software, and engineering with a locally built Compact Antenna Test Range (CATR) reflector to achieve dual-mode EMC and antenna measurements in one chamber.
NTT DATA and Google Cloud expanded their global partnership to speed the adoption of agentic AI and cloud-native modernization across regulated and dataintensive industries. The push emphasizes sovereign cloud options using Google Distributed Cloud, with both airgapped and connected deployments to meet data residency and regulatory needs without stalling innovation. The partners plan to build industry-specific agentic AI solutions on Google Agent space and Gemini models, underpinned by secure data clean rooms and modernized data platforms. NTT DATA is standing up a dedicated Google Cloud Business Group with thousands of engineers and aims to certify 5,000 practitioners to accelerate delivery, migrations, and managed services.
Lumen surpassing 1,000 customers on its Network-as-a-Service platform is a clear marker for where enterprise networking is headed. AI adoption, multi-cloud architectures, and distributed applications are pushing organizations toward on-demand, software-driven connectivity. Lumens platform bundles three core service types under a single digital experience. The platform integrates with major hyperscalers, enabling direct paths to AWS, Microsoft Azure, and Google Cloud. All can be provisioned self-service, scaled up or down based on demand, and stitched to cloud regions and third-party data centers via cloud on-ramps.
Vietnam is entering the hyperscale AI data center map, with VNPT and LG CNS positioning to meet local and regional demand. For telecom operators and enterprises, now is the time to align AI roadmaps with data center strategy: plan for high-density racks and liquid cooling, secure GPU capacity, engineer diverse connectivity, and build energy resilience. As the regions AI infrastructure forms, those who co-design workload placement, interconnect, and power from the outset will gain durable cost and performance advantages.
The Cellular Operators Association of India (COAI), representing Reliance Jio, Bharti Airtel, and Vodafone Idea, is pushing back against direct 5G spectrum allocation for enterprises. COAI argues that India’s urban coverage, revenue priorities, and national security risks make an operator-led model via spectrum leasing or network slicing, more viable. The Department of Telecommunications is reviewing TRAI’s recommendation, with the decision set to shape India’s private 5G market for years.
Rogers’ “Plus It Up” campaign combines upbeat family moments, the hit song Too Easy by Canadian indie artist Connor Price, and the promise of 5G+ connectivity. The TV ad emphasizes household savings with multi-line plans, nationwide coverage, and perks like exclusive entertainment access, all while spotlighting homegrown music talent.
Whitepaper
Explore RADCOM's whitepaper 'Unleashing the Power of 5G Analytics' to understand how telecom operators can drive cost savings and revenue with 5G. Learn about NWDAF's role in network efficiency, innovative use cases, and analytics monetization strategies. Download now for key insights into optimizing 5G network performance....
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025