Private Network Check Readiness - TeckNexus Solutions

Qualcomm & Nokia Bell Labs Unveil AI-Powered Wireless Network Interoperability

At MWC 2025, Qualcomm and Nokia Bell Labs demonstrated how AI-driven wireless networks can achieve multi-vendor interoperability without sharing proprietary data. Their AI-enhanced channel state feedback (CSF) technology optimizes 5G performance, improving network efficiency, signal strength, and reliability. With implications for 6G, Open RAN, and private 5G, this breakthrough is reshaping the future of AI-powered wireless communications.
Qualcomm & Nokia Bell Labs Unveil AI-Powered Wireless Network Interoperability

Pushing the Boundaries of AI in Wireless Networks


As 5G and future wireless technologies evolve, the role of artificial intelligence (AI) in optimizing network performance is becoming increasingly crucial. At Mobile World Congress (MWC) 2025, Qualcomm and Nokia Bell Labs showcased how multiple vendors can develop interoperable AI models to enhance wireless network efficiency.

This innovation builds on their MWC 2024 proof-of-concept, where they demonstrated AI-enhanced channel state feedback (CSF), an approach that allows networks to dynamically adapt to changing wireless conditions.

By using sequential learning, Qualcomm and Nokia Bell Labs proved that AI models from different vendors can be co-developed without requiring proprietary data sharing. This multi-vendor AI collaboration has major implications for the future of 5G and the transition to 6G.

AI in Wireless Networks: Enhancing 5G & 6G Performance

How AI-Powered CSF Optimizes Wireless Network Performance

Channel state feedback (CSF) is essential for ensuring optimal data transmission between a base station and a mobile device. Wireless conditions—such as interference, device movement, and obstacles—constantly change, requiring networks to adapt in real time.

Traditional feedback mechanisms rely on pre-defined beamforming techniques, which lack flexibility in handling rapid environmental shifts. AI-enhanced CSF, however, learns from real-world data, allowing the network to:

  • Generate more precise transmission beams for mobile users.
  • Reduce interference by dynamically adjusting signal paths.
  • Enhance throughput, delivering faster and more reliable connectivity.

By leveraging AI-driven feedback models, Qualcomm and Nokia demonstrated that wireless networks can become significantly smarter and more efficient.

Multi-Vendor AI Collaboration: Enabling Secure Network Interoperability

One of the biggest challenges in multi-vendor AI integration is ensuring interoperability without exposing sensitive intellectual property. Qualcomm and Nokia addressed this issue by implementing sequential learning, an AI training approach that enables collaboration while maintaining proprietary independence.

AI Sequential Learning: A Secure Approach to Wireless AI Integration

Instead of sharing their internal AI models, companies exchange training datasets containing input/output pairs. This allows each vendor to:

  • Train AI models using real-world network conditions.
  • Develop interoperable AI components that can seamlessly work together.
  • Maintain control over proprietary technology.

This approach was tested in two ways:

  1. Device Encoder-First Approach (MWC 2024)

    • Qualcomm developed an encoder model and provided a dataset to Nokia.
    • Nokia then built an interoperable decoder using this dataset.
  2. Network Decoder-First Approach (MWC 2025)

    • Nokia designed a decoder model and shared a dataset with Qualcomm.
    • Qualcomm then created an interoperable encoder.

Both methods achieved similar performance, proving that AI interoperability is scalable and can be adapted to different deployment needs.

AI Performance in Wireless Networks: Real-World Testing Results

Diverse Deployment Scenarios

For AI-driven wireless networks to be effective, models must function reliably across different physical environments. Qualcomm and Nokia tested their AI-enhanced CSF across three distinct cell sites:

  1. An outdoor suburban location
  2. An industrial warehouse environment
  3. A high-density office setting

These tests helped evaluate how well general AI models compare to hyper-localized models trained for specific environments.

General vs. Hyper-Local AI Models

The findings showed that a single AI model trained on diverse datasets could perform on par with hyper-local models customized for individual locations.

  • When the common AI model was introduced to Indoor Site 2, it adapted with minimal retraining.
  • The model’s performance remained within 1% of the locally trained models.

This result highlights the robustness of general AI models, proving they can adapt to new environments with minimal adjustments.

AI vs. Traditional CSF: How AI-Enhanced Feedback Boosts 5G & 6G

To quantify the benefits of AI-driven CSF, Qualcomm and Nokia compared AI-based feedback with legacy grid-of-beam-based feedback (3GPP Type I).

The results showed:

  • Throughput gains ranging from 15% to 95% depending on user location.
  • Higher signal strength and reduced interference across different environments.
  • More efficient spectrum utilization, leading to lower network congestion.

This means AI-enhanced CSF could significantly improve network performance in real-world 5G deployments and beyond.

AI’s Role in 5G & 6G: The Future of Wireless Network Automation

The successful demonstration of multi-vendor AI models has significant implications for 5G evolution and the future 6G era.

Key Benefits of AI-Enhanced Wireless Networks

  1. Higher Network Capacity

    • AI-driven feedback enables better spectrum efficiency, allowing more users to connect with faster speeds.
  2. Improved Reliability and Adaptability

    • AI models dynamically adjust to changing network conditions, ensuring consistent quality of service (QoS).
  3. Energy Efficiency and Sustainability

    • Smarter beamforming reduces energy waste, contributing to green networks and sustainability efforts.
  4. Standardization and Multi-Vendor Collaboration

    • As 3GPP explores AI-based CSF integration, multi-vendor interoperability will be critical for global standardization.

The Future of AI in Wireless: Scaling AI Across 5G & 6G

The Qualcomm-Nokia Bell Labs collaboration represents a major step forward in integrating AI into wireless communications. Their work demonstrates that AI models can:

  • Be trained and deployed across different vendors without compromising proprietary technology.
  • Improve network intelligence, reliability, and energy efficiency.
  • Scale across 5G, 6G, and beyond.

Expanding AI Deployment in Wireless Networks

Moving forward, AI-enhanced CSF could be integrated into:

  • Private 5G networks for enterprise applications like smart factories, logistics, and automation.
  • Next-generation Open RAN architectures, where AI-driven models can enhance radio access network (RAN) performance.
  • 6G research, where AI-native designs will play a key role in enabling self-optimizing networks.

AI-Driven Wireless Networks: The Next Evolution in Connectivity

The results of this multi-vendor AI collaboration prove that AI-driven wireless networks are no longer theoretical—they are becoming reality.

By combining AI, private 5G, and edge computing, Qualcomm and Nokia Bell Labs are leading the way in intelligent network automation.

This breakthrough sets the stage for a more efficient, adaptive, and scalable wireless ecosystem, bringing us one step closer to AI-powered connectivity for the future.


Recent Content

Vodafone Idea (Vi) and IBM are launching an AI Innovation Hub to infuse AI and automation into Vis IT and operations, aiming to boost reliability, speed delivery, and improve customer experience in Indias fast-evolving 5G market. IBM Consulting will work with Vi to co-create AI solutions, digital accelerators, and automation tooling that modernize IT service delivery and streamline business processes. The initiative illustrates how AI and automation can reshape telco IT and managed services while laying groundwork for 5G-era revenue streams. Unified DevOps across OSS/BSS enables faster rollout of plans, bundles, and digital journeys.
Automotive digitization now hinges on 5G’s ability to deliver reliable, low-latency, and scalable connectivity that 4G/LTE cannot sustain for safety-critical use cases. Advanced driver assistance, cooperative perception, and remote operations require millisecond-class response and deterministic reliability across dense traffic conditions. 5G Standalone (SA) with Ultra-Reliable Low-Latency Communications (URLLC), improved positioning, and enhanced uplink meets these thresholds, enabling vehicles and infrastructure to exchange time-sensitive data continuously. This is the foundation for C-V2X, high-fidelity telematics, and closed-loop control that 4G/LTE struggles to support consistently. 5G enables dynamic traffic orchestration, energy-aware routing for EVs, and advanced safety services that can reduce incidents and congestion.
Google will pay a US$35.8 million (A$55 million) penalty and change how it structures Android default search agreements with Australian carriers and OEMs. The Australian Competition and Consumer Commission (ACCC) alleged that Googles contracts with Telstra and Optus from December 2019 to March 2021 blocked rival search engines on carrier-sold Android devices via platform-wide default settings and revenue-sharing incentives. Google admitted the conduct likely lessened competition and agreed to court-enforceable undertakings to remove restrictions that mandated Google Search as the exclusive, out-of-the-box option across search access points (browser defaults, widgets, and in-phone settings).
The 4.44.94 GHz range offers the cleanest mix of technical performance, policy feasibility, and global alignment to move the U.S. ahead in 6G. Midband is where 6G will scale, and 4 GHz sits in the sweet spot. A contiguous 500 MHz block supports wide channels (100 MHz+), strong uplink, and macro coverage comparable to C-Band, but with more spectrum headroom. That translates into better spectral efficiency and a lower total cost per bit for nationwide deployments while still enabling dense enterprise and edge use cases.
Palo Alto Networks PAN-OS 12.1 Orion steps into this gap with a quantum-ready roadmap, a unified multicloud security fabric, expanded AI-driven protections and a new generation of next-generation firewalls (NGFWs) designed for data centers, branches and industrial edge. The release also pushes management into a single operational plane via Strata Cloud Manager, targeting lower operating cost and faster incident response. PAN-OS 12.1 automatically discovers workloads, applications, AI assets and data flows across public cloud and hybrid environments to eliminate blind spots. It continuously assesses posture, flags misconfigurations and exposures in real time and deploys protections in one click across AWS, Azure and Google Cloud.
SK Telecom is partnering with VAST Data to power the Petasus AI Cloud, a sovereign GPUaaS built on NVIDIA accelerated computing and Supermicro systems, designed to support both training and inference at scale for government, research, and enterprise users in South Korea. By placing VAST Data’s AI Operating System at the heart of Petasus, SKT is unifying data and compute services into a single control plane, turning legacy bare-metal workflows that took days or weeks into virtualized environments that can be provisioned in minutes and operated with carrier-grade resilience.
Whitepaper
Explore RADCOM's whitepaper 'Unleashing the Power of 5G Analytics' to understand how telecom operators can drive cost savings and revenue with 5G. Learn about NWDAF's role in network efficiency, innovative use cases, and analytics monetization strategies. Download now for key insights into optimizing 5G network performance....
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025