NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment

NVIDIA and Google Cloud are collaborating to bring secure, on-premises agentic AI to enterprises by integrating Google’s Gemini models with NVIDIA’s Blackwell platforms. Leveraging confidential computing and enhanced infrastructure like the GKE Inference Gateway and Triton Inference Server, the partnership ensures scalable AI deployment without compromising regulatory compliance or data sovereignty.
NVIDIA and Google Cloud Partner to Advance Secure Agentic AI Deployment
Image Credit: NVIDIA and Google Cloud

NVIDIA and Google Cloud are joining forces to enhance enterprise AI applications by integrating Google Gemini AI models with NVIDIA‘s advanced computing platforms. This collaboration aims to facilitate the deployment of agentic AI locally while ensuring strict compliance with data privacy and regulatory standards.

Enhanced Data Security with NVIDIA and Google Cloud


The partnership centers on the use of NVIDIAs Blackwell HGX and DGX platforms, which are now integrated with Google Clouds distributed infrastructure. This setup allows enterprises to operate Googles powerful Gemini AI models directly within their data centers. A key feature of this integration is NVIDIA Confidential Computing, which provides an additional layer of security by safeguarding sensitive code in the Gemini models against unauthorized access and potential data breaches.

Sachin Gupta, Vice President and General Manager of Infrastructure and Solutions at Google Cloud, emphasized the security and operational benefits of this collaboration. “By deploying our Gemini models on-premises with NVIDIA Blackwells exceptional performance and confidential computing capabilities, were enabling enterprises to leverage the full capabilities of agentic AI in a secure and efficient manner,” Gupta stated.

The Advent of Agentic AI in Enterprise Technology

Agentic AI represents a significant evolution in artificial intelligence technology, offering enhanced problem-solving capabilities over traditional AI models. Unlike conventional AI, which operates based on pre-learned information, agentic AI can reason, adapt, and make autonomous decisions in dynamic settings. For instance, in IT support, an agentic AI system can not only retrieve troubleshooting guides but also diagnose and resolve issues autonomously, escalating complex problems as needed.

In the financial sector, while traditional AI might identify potential fraud based on existing patterns, agentic AI goes a step further by proactively investigating anomalies and taking preemptive actions, such as blocking suspicious transactions or dynamically adjusting fraud detection mechanisms.

Addressing On-Premises Deployment Challenges

The ability to deploy agentic AI models on-premises addresses a critical need for organizations with stringent security or data sovereignty requirements. Until now, these organizations have faced significant challenges in utilizing advanced AI models, which often require integration of diverse data types such as text, images, and code, while still adhering to strict regulatory standards.

With Google Cloud now offering one of the first cloud services that enables confidential computing for agentic AI workloads in any environment, be it cloud, on-premises, or hybrid enterprises, no longer have to compromise between advanced AI capabilities and compliance with security regulations.

Future-Proofing AI Deployments

To further support the deployment of AI, Google Cloud has introduced the GKE Inference Gateway. This new service is designed to optimize AI inference workloads, featuring advanced routing, scalability, and integration with NVIDIA’s Triton Inference Server and NeMo Guardrails. It ensures efficient load balancing, enhanced performance, reduced operational costs, and centralized model security and governance.

Looking forward, Google Cloud plans to improve observability for agentic AI workloads by incorporating NVIDIA Dynamo, an open-source library designed to scale reasoning AI models efficiently across various deployment environments.

These advancements in AI deployment and management were highlighted at the Google Cloud Next conference, where NVIDIA held a special address and provided insights through sessions, demonstrations, and expert discussions.

Through this strategic collaboration, NVIDIA and Google Cloud are setting a new standard for secure, efficient, and scalable agentic AI applications, enabling enterprises to harness the full potential of AI while adhering to necessary security and compliance requirements.


Recent Content

Samsung Electronics and KT Corporation have entered a strategic partnership to develop 6G network technologies, focusing on improving signal quality and system performance. Their research prioritizes advanced antenna systems like X-MIMO and AI-driven wireless communication enhancements. The companies aim to tackle high-frequency signal loss in the 7 GHz band and improve network reliability through beamforming and multi-spatial transmission.
India’s telecom sector is rapidly evolving with AI and automation enhancing network operations, customer service, and 5G deployment. With over 125 million 5G users and major investments from companies like Reliance Jio and Bharti Airtel, AI technologies are proving essential for scalability and efficiency. Despite challenges like infrastructure integration and talent gaps, India’s growing AI ecosystem and government support are driving the future of smart telecom solutions.
OpenAI and Meta are eyeing partnerships with Reliance Industries to bring AI tools like ChatGPT and Llama to millions in India. By integrating with Reliance’s telecom and digital networks, these tech giants aim to make AI more accessible and affordable. Reliance’s reach, infrastructure, and government ties make it an ideal partner to scale AI adoption across diverse markets—from cities to rural India.
IMDEA Networks, with partners UC3M, UAM, and UPM, launches DISCO6G—an ambitious 6G project integrating real-time communication and environmental sensing. Led by Jess Omar Lacruz, the initiative focuses on ISAC systems, intelligent surfaces, AI-driven signal optimization, and non-invasive diagnostics to enhance healthcare, smart mobility, and autonomous systems.
MATRIXX Software introduces dynamic billing support for satellite and non-terrestrial network (NTN) services, enabling telecom operators to expand coverage, monetize emerging LEO partnerships, and unify revenue management. The platform supports flexible commercial models, powering growth in underserved regions and across consumer, enterprise, and wholesale markets.
Microsoft has upgraded its 365 Copilot with AI-driven tools—Researcher and Analyst—designed to handle deep research, strategic analysis, and data insights. Powered by OpenAI models, these features allow users to perform complex tasks like market planning, client reporting, and advanced analytics, while integrating data from platforms like Salesforce and Confluence.

Download Magazine

With Subscription
Whitepaper
Explore the Private Network Edition of 5G Magazine, your guide to the latest in private 5G/LTE and CBRS networks. This edition spotlights 11 award categories including private 5G/LTE leader, neutral host leader, and rising startups. It features insights from industry leaders like Jason Wallin of John Deere and an analysis...
Whitepaper
Discover the potential of mobile networks in modern warfare through our extensive whitepaper. Dive into its strategic significance, understand its security risks, and gain insights on optimizing mobile networks in critical situations. An essential guide for defense planners and cybersecurity enthusiasts....

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top