Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle

When Apple declared that LLMs can't reason, they forgot one crucial detail: a hammer isn't meant to turn screws. In our groundbreaking study of Einstein's classic logic puzzle, we discovered something fascinating. While language models initially stumbled with pure reasoning - making amusing claims like "Plumbers don't drive Porsches" - they excelled at an unexpected task.
Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle
Image Credit: SmartR AI

Introduction to LLMs and the Reasoning Debate

A recent Apple publication argued that Large Language Models (LLMs) cannot effectively reason. While there is some merit to this claim regarding out-of-the-box performance, this article demonstrates that with proper application, LLMs can indeed solve complex reasoning problems.

The Initial Experiment: Einstein’s Puzzle


We set out to test LLM reasoning capabilities using Einstein’s puzzle, a complex logic problem involving 5 houses with different characteristics and 15 clues to determine who owns a fish. Our initial tests with leading LLMs showed mixed results:

  • OpenAI’s model correctly guessed the answer, but without clear reasoning
  • Claude provided an incorrect answer
  • When we modified the puzzle with new elements (cars, hobbies, drinks, colors, and jobs), both models failed significantly

Tree of Thoughts Approach and Its Challenges

We implemented our Tree of Thoughts approach, where the model would:

  1. Make guesses about house arrangements
  2. Use critics to evaluate rule violations
  3. Feed this information back for the next round

However, this revealed several interesting failures in reasoning:

Logic Interpretation Issues

The critics often struggled with basic logical concepts. For example, when evaluating the rule “The Plumber lives next to the Pink house,” we received this confused response:

“The Plumber lives in House 2, which is also the Pink house. Since the Plumber lives in the Pink house, it means that the Plumber lives next to the Pink house, which is House 1 (Orange).”

Bias Interference

The models sometimes inserted unfounded biases into their reasoning. For instance:

“The Orange house cannot be in House 1 because the Plumber lives there and the Plumber does not drive a Porsche.”

The models also made assumptions about what music Porsche drivers would listen to, demonstrating how internal biases can interfere with pure logical reasoning.

A Solution Through Code Generation

While direct reasoning showed limitations, we discovered that LLMs could excel when used as code generators. We asked SCOTi to write MiniZinc code to solve the puzzle, resulting in a well-formed constraint programming solution. The key advantages of this approach were:

  1. Each rule could be cleanly translated into code statements
  2. The resulting code was highly readable
  3. MiniZinc could solve the puzzle efficiently

Example of Clear Rule Translation

The MiniZinc code demonstrated elegant translation of puzzle rules into constraints. For instance:

% Statement 11: The man who enjoys Music lives next to the man who drives Porsche
% Note / means AND in minizinc
constraint exists(i,j in 1..5)(abs(i-j) == 1 / hobbies[i] = Music / cars[j] = Porsche);

If you would like to get the full MiniZinc code, please contact me.

Implications and Conclusions: Rethinking the Role of LLMs

This experiment reveals several important insights about LLM capabilities:

  1. Direct reasoning with complex logic can be challenging for LLMs
  2. Simple rule application works well, but performance degrades when multiple steps of inference are required
  3. LLMs excel when used as agents to generate code for solving logical problems
  4. The combination of LLM code generation and traditional constraint solving tools creates powerful solutions

The key takeaway is that while LLMs may struggle with certain types of direct reasoning, they can be incredibly effective when properly applied as components in a larger system. This represents a significant advancement in software development capabilities, demonstrating how LLMs can be transformative when used strategically rather than as standalone reasoning engines.

This study reinforces the view that LLMs are best understood as transformational software components rather than complete reasoning systems. Their impact on software development and problem-solving will continue to evolve as we better understand how to leverage their strengths while working around their limitations.


Recent Content

NVIDIA has launched Halos, a full-stack AI-powered safety system designed to enhance autonomous vehicle (AV) development. By integrating AI models, simulation tools, and compliance frameworks, Halos ensures AV safety from cloud to car. With industry partners like Continental, onsemi, and OMNIVISION, NVIDIA is setting new safety benchmarks for self-driving technology.
General Motors (GM) is strengthening its AI collaboration with NVIDIA to revolutionize manufacturing, vehicle design, and autonomous technology. By leveraging AI-powered digital twins, intelligent robotics, and advanced driver-assistance systems, GM aims to enhance efficiency, safety, and innovation across its operations. This partnership marks a major step toward smarter factories, faster vehicle development, and the future of AI-driven transportation.
NVIDIA is partnering with telecom leaders like T-Mobile, Cisco, and MITRE to develop AI-powered 6G networks, integrating artificial intelligence into next-gen wireless infrastructure. Announced at NVIDIA GTC, this initiative leverages AI-RAN and Open RAN technologies to enhance spectral efficiency, optimize network performance, and enable seamless 6G connectivity.
Verizon Business has introduced the Verizon Business Assistant, an AI-powered tool that helps small businesses automate customer interactions via text messaging. This AI-driven solution enables 24/7 customer support, instant responses, and seamless human handoff when needed. Designed to enhance customer engagement and business efficiency, the AI assistant learns from past interactions, allowing businesses to focus on growth while providing fast and accurate responses to customer inquiries.
The West is falling behind fast. China constructs in days what takes the West years. Russia develops weapons we have no answer for. And the West’s defense programs? Drowning in redtape and billion-dollar overruns. But there is hope. AI can cut through bureaucracy, slash through development times, and help reclaim a technological edge. The future of Western aerospace isn’t inevitable, it’s optional.
The US Department of Defense has transitioned 5G Open RAN from prototype to full operational deployment, enhancing military logistics, automation, and cybersecurity. With industry partners like JMA Wireless and Federated Wireless, the DoD is leveraging 5G for mission-critical operations. This article explores how 5G Open RAN improves operational resilience, workforce efficiency, and future military applications, including spectrum management and AI-driven network optimization.

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top