Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle

When Apple declared that LLMs can't reason, they forgot one crucial detail: a hammer isn't meant to turn screws. In our groundbreaking study of Einstein's classic logic puzzle, we discovered something fascinating. While language models initially stumbled with pure reasoning - making amusing claims like "Plumbers don't drive Porsches" - they excelled at an unexpected task.
Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle
Image Credit: SmartR AI

Introduction to LLMs and the Reasoning Debate

A recent Apple publication argued that Large Language Models (LLMs) cannot effectively reason. While there is some merit to this claim regarding out-of-the-box performance, this article demonstrates that with proper application, LLMs can indeed solve complex reasoning problems.

The Initial Experiment: Einstein’s Puzzle


We set out to test LLM reasoning capabilities using Einstein’s puzzle, a complex logic problem involving 5 houses with different characteristics and 15 clues to determine who owns a fish. Our initial tests with leading LLMs showed mixed results:

  • OpenAI’s model correctly guessed the answer, but without clear reasoning
  • Claude provided an incorrect answer
  • When we modified the puzzle with new elements (cars, hobbies, drinks, colors, and jobs), both models failed significantly

Tree of Thoughts Approach and Its Challenges

We implemented our Tree of Thoughts approach, where the model would:

  1. Make guesses about house arrangements
  2. Use critics to evaluate rule violations
  3. Feed this information back for the next round

However, this revealed several interesting failures in reasoning:

Logic Interpretation Issues

The critics often struggled with basic logical concepts. For example, when evaluating the rule “The Plumber lives next to the Pink house,” we received this confused response:

“The Plumber lives in House 2, which is also the Pink house. Since the Plumber lives in the Pink house, it means that the Plumber lives next to the Pink house, which is House 1 (Orange).”

Bias Interference

The models sometimes inserted unfounded biases into their reasoning. For instance:

“The Orange house cannot be in House 1 because the Plumber lives there and the Plumber does not drive a Porsche.”

The models also made assumptions about what music Porsche drivers would listen to, demonstrating how internal biases can interfere with pure logical reasoning.

A Solution Through Code Generation

While direct reasoning showed limitations, we discovered that LLMs could excel when used as code generators. We asked SCOTi to write MiniZinc code to solve the puzzle, resulting in a well-formed constraint programming solution. The key advantages of this approach were:

  1. Each rule could be cleanly translated into code statements
  2. The resulting code was highly readable
  3. MiniZinc could solve the puzzle efficiently

Example of Clear Rule Translation

The MiniZinc code demonstrated elegant translation of puzzle rules into constraints. For instance:

% Statement 11: The man who enjoys Music lives next to the man who drives Porsche
% Note / means AND in minizinc
constraint exists(i,j in 1..5)(abs(i-j) == 1 / hobbies[i] = Music / cars[j] = Porsche);

If you would like to get the full MiniZinc code, please contact me.

Implications and Conclusions: Rethinking the Role of LLMs

This experiment reveals several important insights about LLM capabilities:

  1. Direct reasoning with complex logic can be challenging for LLMs
  2. Simple rule application works well, but performance degrades when multiple steps of inference are required
  3. LLMs excel when used as agents to generate code for solving logical problems
  4. The combination of LLM code generation and traditional constraint solving tools creates powerful solutions

The key takeaway is that while LLMs may struggle with certain types of direct reasoning, they can be incredibly effective when properly applied as components in a larger system. This represents a significant advancement in software development capabilities, demonstrating how LLMs can be transformative when used strategically rather than as standalone reasoning engines.

This study reinforces the view that LLMs are best understood as transformational software components rather than complete reasoning systems. Their impact on software development and problem-solving will continue to evolve as we better understand how to leverage their strengths while working around their limitations.


Recent Content

Generative AI is a whole new spearheading technologies paying into the healthcare to analyze massive data to prevent and manage diseases with a personal approach. Beyond treatment decisions, Generative AI is broadly applicable in wide range of healthcare tasks, including finance management.  Notably, with increasing adoption across healthcare, GenAI in healthcare industry is likely to gain momentum in the upcoming years. According to the Roots Analysis, Generative AI in health market is estimated to reach at USD 39.8 billion by 2035, expecting to grow at a CAGR of 28% during the forecast period. Let’s explore more about Generative AI across healthcare industry.
5G Advanced and AI are reshaping utility private networks into hyper-intelligent, resilient grids. Learn how edge AI, programmable networks, digital twins, and human-in-the-loop automation will enable predictive maintenance, real-time grid optimization, and new energy services.
Cybersecurity is now a core pillar of utility private networks. Explore how Zero Trust Architecture helps utilities secure SCADA systems, protect distributed energy assets, and comply with NERC CIP standards, keeping critical infrastructure safe in a hybrid IT/OT world.
Utilities are turning private LTE and 5G networks into revenue engines with monetization and shared use models. Learn how Fixed Wireless Access, neutral host strategies, mobile wholesale partnerships, and edge services help utilities bridge the digital divide, support local economies, and generate ROI from advanced network investments.
Private LTE and 5G networks enable utilities to achieve sustainability and ESG goals by supporting clean energy, climate resilience, safer field operations, and transparent ESG reporting. Discover how utilities are using private networks to lower emissions, integrate renewables, and protect communities.
As utility private networks scale beyond pilot deployments, success depends on more than connectivity. This blog explores how utilities are applying orchestration frameworks, secure governance models, and lifecycle management strategies to build scalable, resilient, and future-ready private LTE and 5G infrastructures, ensuring long-term performance, compliance, and adaptability.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top

Private Network Readiness Assessment

Run your readiness check now — for enterprises, operators, OEMs & SIs planning and delivering Private 5G solutions with confidence.