Private Network Check Readiness - TeckNexus Solutions

Verizon’s Leap in 5G: Custom Network Experiences with Network Slicing

Verizon makes a significant stride in 5G technology by successfully implementing network slicing, promising personalized network experiences based on individual application needs.
Verizon's Leap in 5G: Custom Network Experiences with Network Slicing

Verizon has achieved a breakthrough in utilizing network slicing in a full-fledged commercial 5G scenario, setting the stage for a new era of networking. Network Slicing advancement allows users to guide their data traffic across virtual networks, specifically tailored to align with the demands of distinct applications. In other words, customers can customize their network experience based on their specific requirements, optimizing network performance across various services.


This capability is engineered for network traffic on Verizon’s state-of-the-art standalone 5G core that is cloud-native, containerized, and virtualized. This offers service agility, flexibility, and automated scalability. The technological accomplishment is expected to reshape the way businesses and individuals utilize networks, offering a custom-tailored network experience for each application.

“By aligning network performance with specific application needs, network slicing opens up new possibilities for providing superior customer experiences. It offers a tailored service that lets our customers effectively use our network based on their specific needs,” stated Adam Koeppe, Senior Vice President of Technology Planning at Verizon.

In a recent demonstration, a 5G smartphone was successfully connected to multiple network slices, showcasing the ability to move data through the network without any glitches. The demonstration was powered by a standard smartphone, virtualized and non-virtualized RAN equipment currently in active field production, alongside Verizon’s multi-vendor standalone 5G core. This end-to-end test served as proof of the harmonious functioning of various components, from the device’s chipset, operating system, and application to the radio network base station and the core of the network.

The demonstration highlighted the potential of a complete data path on a virtual network slice, validating the technology and presenting a promising future for its practical applications. Network slicing, as an integral feature, will be incorporated as Verizon’s 5G standalone core evolves. To make the most of this network functionality, customers will need devices capable of supporting 5G network slicing.

Network slicing is an innovative feature exclusive to 5G technology. It leverages a virtualized network infrastructure to dynamically tailor network performance to align with the specific needs of distinct applications, optimizing overall network performance. The advanced capabilities, broader bandwidth, high speed, and reduced latency of 5G are inspiring the creation of a broad range of innovative use cases.

From IoT devices demanding minimal network resources to sophisticated smartphone applications that use data in countless ways, and to complex applications like gaming, AR/VR, and mixed reality requiring massive computing power and low latency on the network edge, network slicing could be a game-changer. AI and Machine Learning capabilities are expected to enable dynamic resource allocation and real-time network function adjustments to maintain optimal service levels and network resources for each use case.

Consider the example of utility company smart readers. These devices are not latency-sensitive, require less bandwidth, and don’t need mobility routing functions as they are stationary. In contrast, mobile online gaming can immensely benefit from specific upload and download speeds and low latency to offer an immersive experience. With network slicing, Verizon can provide network performance tailored to each application’s needs, delivering an efficient, dynamic network resource provision that adjusts in real-time to support the customer experience based on the applications they are using.

Verizon’s breakthrough in network slicing promises to bring an unprecedented level of customization and efficiency to network usage, revolutionizing the way we connect and communicate in the 5G era. As this technology continues to evolve, we can expect even more exciting innovations on the horizon.


Recent Content

SK Telecom is partnering with VAST Data to power the Petasus AI Cloud, a sovereign GPUaaS built on NVIDIA accelerated computing and Supermicro systems, designed to support both training and inference at scale for government, research, and enterprise users in South Korea. By placing VAST Data’s AI Operating System at the heart of Petasus, SKT is unifying data and compute services into a single control plane, turning legacy bare-metal workflows that took days or weeks into virtualized environments that can be provisioned in minutes and operated with carrier-grade resilience.
Beijing’s first World Humanoid Robot Games is more than a spectacle. It is a live systems trial for embodied AI, connectivity, and edge operations at scale. Over three days at the Beijing National Speed Skating Oval, more than 500 humanoid robots from roughly 280 teams representing 16 countries are competing in 26 events that span athletics and applied tasks, from soccer and boxing to medicine sorting and venue cleanup. The games double as a staging ground for 5G-Advanced (5G-A) capabilities designed for uplink-intensive, low-latency, high-reliability robotics traffic. Indoors, a digital system with 300 MHz of spectrum delivers multi-Gbps peaks and sustains uplink above 100 Mbps.
India has cleared a high-capacity semiconductor fabrication plant slated to produce up to 50,000 300mm wafers per month, a cornerstone move to localize chip supply for telecom, cloud, automotive, and industrial electronics. India’s electronics and IT leadership confirmed plans for a large-scale silicon fab with a targeted capacity of 50,000 wafers per month. The project is being led by Tata Group, with technology partnership support widely expected from a specialty foundry player, aligning with earlier approvals for mature-node logic and power processes. The fab is planned in Gujarat’s industrial corridor, building on India’s recent momentum in assembly, test, and packaging investments.
stc 5G powered the Esports World Cup with 1,295 antennas and 285 MHz spectrum, delivering broadcast-grade uplink, low latency, and reliable performance.
Infosys will acquire a 75% stake in Telstra’s Versent Group for approximately $153 million to launch an AI-led cloud and digital joint venture aimed at Australian enterprises and public sector agencies. Infosys will hold operational control with 75% ownership, while Telstra retains a 25% minority stake. The JV blends Telstra’s connectivity footprint, Versents local engineering depth and Infosys global scale and AI stack. With Topaz and Cobalt, Infosys can pair model development and orchestration with landing zones, FinOps, and MLOps on major hyperscaler platforms. Closing is expected in the second half of FY 2026, subject to regulatory approvals and customary conditions.
New data shows AI-native startups hitting ARR milestones faster than cloud cohorts, reshaping SaaS and telecom with agents, memory and 2025 priorities.
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025