AI Innovations in Telecom: AWS and Altman Solon’s Key Insights

Discover how AI, including generative AI (GenAI), is transforming the telecom industry. Learn from AWS and Altman Solon's insights on AI applications such as network optimization, customer service enhancement, and data governance. The CONNECT(X) conference highlights further underscore the pivotal role of AI in telecom.
AI Innovations in Telecom: AWS and Altman Solon's Key Insights

AI Transformations in Telecom: Insights from AWS and Altman Solon

The telecommunications industry is rapidly evolving, driven by advancements in artificial intelligence (AI). A recent study by AWS and Altman Solon sheds light on AI’s transformative potential within this sector. The study surveyed over 100 senior business leaders from Tier 1 communication service providers (CSPs) across the U.S., Western Europe, and Asia Pacific, revealing key insights and trends.

AWS Insights on High-Impact AI Applications in Telecom


According to the survey, network-related AI applications are considered the most valuable. One significant use case involves optimizing massive MIMO radio beams, which improves network efficiency and reduces operational costs. AI-driven digital twins are also gaining traction, offering continuous automation and real-time insights into network performance. Digital twins, in particular, process data from radios and the core network to provide a near-real-time view of network operations, facilitating better decision-making and proactive maintenance.

GenAI for Improved Telecom Customer Interactions

Generative AI (GenAI) is particularly promising for customer service applications. The study highlights that customer chatbots are the most widely adopted use case, with 63% of respondents implementing them in production. These AI-driven chatbots enhance customer experience by providing human-like interactions and reducing the need for human intervention in routine queries. Contact center documentation and guided employee assistance are also emerging as high-value applications. These use cases improve customer satisfaction and drive operational efficiencies by automating repetitive tasks and providing real-time support to customer service representatives.

Ensuring Data Security and Governance in AI Implementations

Despite the enthusiasm for AI, CSPs emphasize the importance of data security and governance. Integrating data siloes and maintaining robust governance frameworks are critical for ensuring compliance and protecting sensitive information. The study indicates that data governance and ownership are the greatest gaps, with many CSPs focusing on establishing clear data management principles and policies. Effective data governance is essential for leveraging AI technologies while adhering to regulatory requirements and maintaining customer trust.

Adoption Trends and Future of AI in Telecom

The current adoption rate of generative AI use cases averages 19%, with significant growth expectations. By 2025, CSPs anticipate a substantial increase in AI spending, with 45% projecting their AI investments to rise to 2-6% of their total technology spend. This reflects a growing confidence in AI’s ability to drive innovation and efficiency in telecom operations. North American CSPs lead in adoption, followed closely by European counterparts, while APAC lags slightly due to perceived limitations in non-English language models and lower data capabilities.

AI in Telecom: Key Takeaways from CONNECT(X)

At the recent CONNECT(X) conference in Atlanta, industry leaders further emphasized the impact of AI on telecom. Ross McWalter, Head of Telecom Applications at AWS, shared insights from their extensive survey. He noted that initial AI use cases focused on natural language processing for internal applications, allowing telcos to refine their AI capabilities before deploying them externally.

GenAI Solutions for Telecom Contact Center Efficiency

One prominent discussion at CONNECT(X) revolved around the use of GenAI in contact centers. McWalter highlighted the potential for AI to reduce operational costs and enhance product sales through personalized recommendations. Drawing parallels with Netflix’s success in using AI for personal recommendations, he suggested that similar approaches could significantly boost telecom revenues. AI-driven personalization can provide tailored service recommendations and promotions, thereby enhancing customer engagement and driving sales growth.

AI-Driven Network Optimization Strategies

The conference also underscored the value of AI in network optimization. Gerardo Giaretta from Qualcomm Technologies discussed the application of AI in network planning and the operation of massive MIMO radio beams. AI’s ability to predict traffic loads and optimize beam steering can lead to significant cost savings and improved network performance. Qualcomm’s Edgewise solution, for instance, orchestrates radios and predicts traffic loads to prevent surges or faults, ensuring smoother network operations and enhanced user experiences.

Virtualization and Cloudification: Paving the Way for AI in Telecom

Telecom operators have been virtualizing and cloudifying their networks for several years. This movement is a critical step toward integrating AI into telecom networks. Giaretta noted that many operators are pursuing virtualization and cloudification as foundational steps to bring AI capabilities into their networks. This shift not only improves network flexibility and scalability but also reduces operational costs. By leveraging cloud-based AI solutions, operators can efficiently manage network resources, optimize performance, and quickly adapt to changing demands.

Optimizing Data Capabilities for AI in Telecom

A data-centric approach is pivotal for successful AI integration in telecom. The survey by AWS and Altman Solon highlights the need for CSPs to enhance their data capabilities. This involves centralizing data management, ensuring data quality and integration, and modernizing data infrastructure. Leading CSPs are adopting cloud-based data architectures to handle large volumes of structured and unstructured data, facilitating seamless AI deployments. Moreover, data proficiency within organizations is crucial. CSPs with advanced analytics and AI capabilities are better positioned to leverage AI for both operational efficiencies and revenue generation.

AI Model Strategies: Off-the-Shelf vs. In-House for Telecom

Most CSPs prefer using off-the-shelf generative AI models, with plans to train these models using proprietary internal data. The debate continues on the best approach to model customization, with CSPs exploring both fine-tuning and prompt engineering/context learning techniques. Off-the-shelf models offer a quicker path to deployment, while fine-tuning and context learning provide tailored solutions that better address specific telecom needs. The choice between these approaches depends on factors such as cost, resource availability, and the complexity of the use cases.

AI in Telecom: Future Trends and Opportunities

Generative AI is poised to transform the telecommunications industry, offering new opportunities for innovation and efficiency. CSPs are investing in data infrastructure modernization and exploring managed service platforms to accelerate AI adoption. As technology evolves, the focus will be on balancing cost, performance, and regulatory compliance to maximize the benefits of generative AI in telecom. Managed service platforms and Model-as-a-Service (MaaS) providers are emerging as key enablers, offering scalable AI solutions without the need for extensive in-house development.

Harnessing AI for Telecom: Final Insights

AI is set to revolutionize the telecommunications industry, with both current implementations and future prospects showcasing its transformative potential. Insights from AWS, Altman Solon, and industry events like CONNECT(X) highlight the diverse applications and benefits of AI in telecom. By understanding the relative risk and technical complexity of adopting generative AI, CSPs can better navigate the challenges and capitalize on the transformative potential of this technology. As CSPs continue to invest in AI, focusing on data security and governance will be essential to unlocking the full potential of these technologies. The fusion of AI and telecom is not just an innovative step but an imperative one for staying competitive in a rapidly evolving digital landscape.


Recent Content

Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality. Discover key insights, real-world case studies, and strategic actions for telecom leaders. Download the Full Report Now to stay ahead in AI-powered service assurance.
Dive into our in-depth coverage of MWC 2025, highlighting the latest innovations in 5G, AI, IoT, and more. Discover how industry leaders are shaping the future of technology with groundbreaking announcements and developments unveiled during the event.
At MWC 2025 Keynote 12: Future of Work and Economic Growth, industry leaders explored how AI, talent shortages, and startup growth are reshaping global markets. From Europe’s role in applied AI to the importance of scaling startups internationally, the discussions offered crucial insights for entrepreneurs, investors, and tech professionals. Discover key takeaways on AI-driven industries, workforce transformation, and economic innovation. Featuring Euan Blair (Multiverse), Saadia Zahidi (WEF), Yoram Wijngaarde (Dealroom.co), Renate Nikolay (European Commission), and Jordi Romero (Factorial), this session explores workforce transformation, AIโ€™s role in labor markets, and strategies to boost Europeโ€™s innovation and competitiveness.
At MWC 2025 Keynote 11: Disinformation, Trust & Security, leading experts explore the growing challenges of AI-driven misinformation, online safety, and trust in the digital age. Featuring Ross Frenett (Moonshot), Nina Dos Santos (Ctrl Alt Deceit Podcast), Sachin Dev Duggal (Builder.ai), Marieke Snoep (KPN), and Boris Nihom (Dentsu Benelux), this session covers misinformation detection, media literacy, and corporate responsibility in building a safer internet.
At MWC 2025 Keynote 10: Innovation in Action, top industry leaders discussed how AI is transforming media, journalism, and enterprise automation. Featuring Jessica Sibley (TIME), Nicholas Johnston (Axios), and Bret Taylor (Sierra), the session explored AI-powered newsrooms, the ethical implications of AI-driven content, and the rise of AI agents in business operations. Learn how AI is reshaping the future of work and media while maintaining human oversight and editorial integrity.
At MWC 2025 Keynote 9: Technology, Climate Change & Justice, top leaders explored how AI, business leadership, and innovation can address the climate crisis. Featuring Leah Seligmann (The B Team), Ami Badani (Arm), Anna Borg (Vattenfall), and Peter Sarlin (AMD Silo AI), discussions focused on AIโ€™s rising energy demands, sustainable business models, and corporate responsibility. Discover key insights on how technology can be a force for climate action and environmental justice.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top