5G and 6G | Future of communications has already started today | ReOrbit

The space industry should reach $1 trillion in annual revenue by 2040, according to a report by Citibank analysts. At the same time, a recent report from Inmarsat and Globant estimates the world could reach net zero up to ten years ahead of the 2050 target if industries make the most of existing and emerging space-based satellite technology. Suffice to say, space can offer an array of solutions for sustainability, security and connectivity. Mobile communications have evolved from generation to generation, adding better capabilities, and the trend is far from being over. The sixth generation is already in the making, and the core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration and interaction. 6G will also aim to enhance machine communication, with the focus on autonomous machines and vehicles capable of sensing their surrounding environment in real time (network as a sensor). This article expands on how small satellites will augment the future of communications that starts already today.

Telecommunications technology has progressed incredibly fast, ever since Marconi fathered radio access technology, all the way to modern broadband mobile communications serving high-density areas. Space hasn’t grown unaware of this technological progress that happened in the last century. Radio links have been, for obvious reasons, the preferred mechanism for transferring data from satellites to the ground. On the satellite communications (SATCOM) front, the spectrum exploitation level of sophistication is very high, using multiple-access techniques such as frequency-division multiplexing or time-division multiplexing. It is truly fascinating how many users can be served with a single SATCOM satellite and with only one parabolic reflector. Now, talking about mobile communications, it goes without mentioning that the significant progress, bridging over generations, has brought better capabilities, and the trend is far from being over. Initially, the first two mobile comms generations aimed to ensure the efficient transmission of voice information. With newer generations, more digital technologies, bandwidth-efficient modulation schemes for a smarter use of an increasingly contested spectrum proliferated, allowing faster data rates, more secure radio access technology and a breadth of protocol layers ready to carry internet protocol (IP) datagrams. Among other benefits, this allowed the end users to enjoy the possibility of having access from their smartphones to the same services and applications they previously only enjoyed on their computers. How? By seamlessly merging mobile and global networks, and that’s not the end of the story.

5G keeps evolving

The fifth generation of deployed mobile communications — or 5G—has upped the game in terms of capabilities if compared to previous generations. A key milestone was achieved when a new radio-access technology known as NR (New Radio) was devised. The ruling innovative factor in defining a brand-new radio access technology meant that NR, unlike previous evolutions, was not restricted by a need to retain backward compatibility. This allowed for rolling out a set of three key use cases.

These awards recognize innovators in private network deployments across connected industries leveraging 5G, LTE, or CBRS. Showcase your achievements in select categories and be recognized by the industry. Explore the 25 award categories here.

Key Dates to Remember:

  • Entries OpenSubmit Now!
  • Entries Close: October 30, 2024
  • Winners Announced: November 15, 2024
  • Private Network Magazine: November 30, 2024

Find more details and FAQs on what’s required to submit your nomination, including submission guidelines, and judging criteria.

Enhanced Mobile BroadBand (eMBB)

eMBB which appears as the most straightforward evolution from previous generations, enables larger data volumes and further enhanced user experience.

Ultra-Reliable and Low-Latency Communication (URLLC)

URLLC with services targeted to ensure very low latency and high reliability. Examples hereof are traffic safety, smart cities, automatic control, power grid, and factory automation (Industry 4.0)

Massive Machine-Type Communication (mMTC)

mMTC provides services that are characterized by a massive number of devices, such as remote sensors, actuators, and monitoring equipment. Key requirements for such services include ultra-low device cost and low power consumption, allowing for extended device battery life of up to at least several years. Typically, each of these devices consumes and generates only a relatively small amount of data; thus, support for high data rates is of less importance.

Although 5G was deployed several years ago (Release 15), it is still growing strong and continues evolving. The newest evolution of 5G (Release 18>) is called 5G Advanced, and it is meant to add support for new applications and use cases. 5G Advanced is expected to bring significant enhancements around smarter network management by incorporating AI/ML techniques for beam management, load balancing, channel state information feedback enhancement, improvements in positioning accuracy, and user equipment network slicing. 5G Advanced plans to incorporate low-latency audio and video streaming services aimed at Extended reality (XR), along with a more energy-efficient use of network resources and Deterministic Networking (DetNet) capabilities to ensure deterministic data paths for real-time applications with extremely low data loss rates and packet delay variation.

What is more, recent releases of 5G have made significant progress on integrating satellite communications with 5G NR techniques called “non-terrestrial network”, or NTN. The study of non-terrestrial networks includes identifying NTN scenarios, architectures, and use cases by considering the integration of satellite access in the 5G network, including roaming, broadcast/multicast, secure private networks, etc. Therefore, the synergy between satellites and 5G is beyond speculation; in today’s reality, it is a tangible scenario where space technology and mobile communications augment each other.

Watch this space for what’s next: 6G

Whilst 5G Advanced is about adapting the already established generation for new incremental use cases, 6G is designed for the human digital needs of the next ten years and beyond. The sixth generation is already in the making, coordinated by the 3rd Generation Partnership Project (3GPP), the standards development organization behind the 6G initial research of enabling technologies, the definition of the requirements, the technical steering, and the identification of use cases. This ongoing activity will span for the next half-decade or so, refining the architecture and starting off implementation. The core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration, and interaction. 6G will also aim to enhance machine communication, with a focus on autonomous machines and vehicles capable of sensing their surrounding environment in real-time (network as a sensor). 6G will provide key enabling services, such as hyper-precise positioning, mapping, and smart health.

This ebook provides essential insights and practical tools for navigating private networks, with technical details and case studies for telecom professionals and organizations seeking secure, tailored connectivity. Get Details.

eBook Authored by Mika Skarp, Dr. Jose Costa-Requena, and Bren Tully Walsh from Cumucore. 

Also, available on Amazon/Kindle and Google Books.

Will sky be the limit for 6G?

Satellites carrying data hubs and humans carrying smartphones have more in common than one can grasp at a glance. Both are moving nodes in adaptive, time-variant networks. Humans move around cities following rather complex adaptive patterns, while satellites describe more deterministic paths in orbit. By choosing their orbiting geometry carefully, connected constellations in Low Earth Orbit (LEO) can be deployed to achieve global coverage with low latency and smaller propagation losses. This is crucially important for today’s world, where almost half of the world’s population still lives in rural and remote areas that do not have basic connectivity services, according to the World Bank data. Non-terrestrial networks can provide affordable and reliable broadband services for areas where mobile operators do not find commercial feasibility in building terrestrial networks. What is more, by integrating different non-terrestrial network systems together, such as LEO satellites, unmanned aerial vehicles, and high-altitude platforms, non-terrestrial networks can be flexibly implemented and thus, connect people through various devices such as smartphones and laptops, help sense and monitor critical infrastructure in a secure and power-efficient manner, and more. Suffice to say, for mobile networks, the sky is not the limit. The solutions to reinforce the mission of helping humans and machines interact and exchange data seamlessly are ready and waiting for their turn to shoot for the stars. Small, cost-effective satellites have an immense potential to expand universal coverage, close the digital divide around the world and benefit global society and the environment. At ReOrbit, we offer ready-to-go space systems and avionics to streamline data flow in space for flexible and timely missions at any orbit. Join us on a journey of simplifying connectivity in space and move your data fast with ReOrbit.

Read the complete article in the 5G Magazine

Related Magazine Content

Magazine
This edition dives into the evolving world of satellite technology and its synergy with modern communication networks, highlighting key developments and challenges. Seraphim opens the discussion with a detailed look at the global race in satellite connectivity, emphasizing its impact on the mobile phone industry. Astrocast then explores the economic aspects of Satellite IoT, underlining its growing importance in global connectivity.
Magazine
This edition dives into the evolving world of satellite technology and its synergy with modern communication networks, highlighting key developments and challenges. Seraphim opens the discussion with a detailed look at the global race in satellite connectivity, emphasizing its impact on the mobile phone industry. Astrocast then explores the economic aspects of Satellite IoT, underlining its growing importance in global connectivity.
Magazine
Non-Terrestrial Networks (NTN), including satellite and related platforms, amplify the reach of 5G IoT, providing connectivity in remote or disaster-hit areas. With potential applications ranging from remote industrial monitoring to precision farming, the combination of 5G and IoT is ushering in a new era of digital transformation. Yet, challenges like scalability, energy efficiency, and security remain to be addressed, and innovations in edge computing, AI, and advanced communication technologies pave the way forward.
Magazine
Non-Terrestrial Networks (NTN), including satellite and related platforms, amplify the reach of 5G IoT, providing connectivity in remote or disaster-hit areas. With potential applications ranging from remote industrial monitoring to precision farming, the combination of 5G and IoT is ushering in a new era of digital transformation. Yet, challenges like scalability, energy efficiency, and security remain to be addressed, and innovations in edge computing, AI, and advanced communication technologies pave the way forward.
Magazine
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazine
Organizations globally are tapping into the vast potential of the Operational IoT market, from transforming weather monitoring in remote mines to ensuring safe drinking water in African communities. The real game-changer is the integration of reliable, cost-effective satellite connections, predicted to rise to tens of millions by 2030. These connections make it possible to transmit data periodically rather than in real-time, reducing costs and meeting the specific needs of industries like agriculture, shipping, and environmental monitoring. The challenge for Systems Integrators (SIs) is to ensure their Satellite IoT deployments are not only technologically viable but also commercially successful. Ensuring robust satellite coverage, cost-effective deployment, and prolonged battery life are essential to this business case. Forward-thinking SIs have already started their journeys, optimizing Satellite IoT solutions, proving its business worth, and preparing for large-scale deployments.
Magazine
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazine
The emergence of 5G New Radio NTN is set to revolutionize the satellite communication market by bridging the gap between terrestrial and non-terrestrial networks. Offering improved speeds, lower latency, and enhanced reliability, 5G NR unlocks new transformative use cases from smart cities to augmented reality. With 5G NR’s potential to beam signals from space, satellite communication will gain a competitive edge, providing powerful, seamless connectivity globally. Additionally, the unification of 5G standardization for both types of technologies promises heightened interoperability, allowing users to switch between networks effortlessly. This synergy presents a lucrative opportunity for businesses in both sectors, even as technical challenges persist.
Magazine
The space industry should reach $1 trillion in annual revenue by 2040, according to a report by Citibank analysts. At the same time, a recent report from Inmarsat and Globant estimates the world could reach net zero up to ten years ahead of the 2050 target if industries make the most of existing and emerging space-based satellite technology. Suffice to say, space can offer an array of solutions for sustainability, security and connectivity. Mobile communications have evolved from generation to generation, adding better capabilities, and the trend is far from being over. The sixth generation is already in the making, and the core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration and interaction. 6G will also aim to enhance machine communication, with the focus on autonomous machines and vehicles capable of sensing their surrounding environment in real time (network as a sensor). This article expands on how small satellites will augment the future of communications that starts already today.
Magazine
The space industry should reach $1 trillion in annual revenue by 2040, according to a report by Citibank analysts. At the same time, a recent report from Inmarsat and Globant estimates the world could reach net zero up to ten years ahead of the 2050 target if industries make the most of existing and emerging space-based satellite technology. Suffice to say, space can offer an array of solutions for sustainability, security and connectivity. Mobile communications have evolved from generation to generation, adding better capabilities, and the trend is far from being over. The sixth generation is already in the making, and the core driving factors for 6G will revolve around enhancing human communication, including immersive experience, telepresence, multimodal collaboration and interaction. 6G will also aim to enhance machine communication, with the focus on autonomous machines and vehicles capable of sensing their surrounding environment in real time (network as a sensor). This article expands on how small satellites will augment the future of communications that starts already today.
Magazine
Non-Terrestrial Networks will be an integral part of 6G to provide global connectivity with seamless coverage. The initial introduction of NTN in the 5G system is an important step for the establishment of a global standard for integrated scenarios with terrestrial and Non-Terrestrial networks. However, a much more flexible approach to integrate dynamic network elements such as UAVs, (V)LEO satellites and small satellites is required compared to NTN in 5G.
Magazine
Non-Terrestrial Networks will be an integral part of 6G to provide global connectivity with seamless coverage. The initial introduction of NTN in the 5G system is an important step for the establishment of a global standard for integrated scenarios with terrestrial and Non-Terrestrial networks. However, a much more flexible approach to integrate dynamic network elements such as UAVs, (V)LEO satellites and small satellites is required compared to NTN in 5G.
Magazine
The rise of smart vehicles, projected to surpass 470 million connected cars by 2025, is rapidly transforming the transportation landscape. Enabled by IoT, these vehicles offer real-time communication with infrastructure, on-the-go diagnostics, and advanced safety features. Yet, challenges like patchy cellular network coverage persist. From facilitating autonomous driving and vehicle-to-vehicle communication to enhancing safety and sustainability, satellite-powered IoT is set to accelerate the connected vehicles revolution, optimizing transportation efficiency and environmental impact.
Magazine
The rise of smart vehicles, projected to surpass 470 million connected cars by 2025, is rapidly transforming the transportation landscape. Enabled by IoT, these vehicles offer real-time communication with infrastructure, on-the-go diagnostics, and advanced safety features. Yet, challenges like patchy cellular network coverage persist. From facilitating autonomous driving and vehicle-to-vehicle communication to enhancing safety and sustainability, satellite-powered IoT is set to accelerate the connected vehicles revolution, optimizing transportation efficiency and environmental impact.
Magazine
The mobile phone industry is undergoing a transformation, with emerging technology enabling direct communication between standard mobile phones and satellites. With regulatory changes, international partnerships, and new technological standards, mobile devices will soon boast enhanced satellite connectivity. Companies like SpaceX and Apple are diving deep into the race to provide extensive satellite communication, partnering with T-Mobile and Globalstar, respectively. As the competition intensifies, companies are pushed to innovate or risk becoming obsolete.
Magazine
The mobile phone industry is undergoing a transformation, with emerging technology enabling direct communication between standard mobile phones and satellites. With regulatory changes, international partnerships, and new technological standards, mobile devices will soon boast enhanced satellite connectivity. Companies like SpaceX and Apple are diving deep into the race to provide extensive satellite communication, partnering with T-Mobile and Globalstar, respectively. As the competition intensifies, companies are pushed to innovate or risk becoming obsolete.
Magazine
The age of connectivity we live in is marked by an explosion in smart devices and data consumption, underpinned by rapid urbanization and technological innovations. This necessitates superior communication infrastructure, especially with the rise of 4K/8K video streaming, online gaming, VR/AR, and shifts in work culture prompted by COVID-19. Despite 4G/LTE networks serving us till now, they lack in terms of speed and latency for present needs. Ensuring low-latency is paramount for real-time communications, particularly in sectors like autonomous vehicles, healthcare, and finance. Integrating terrestrial networks (like 5G) with non-terrestrial networks (like satellites) presents a solution, but is challenged by technical, regulatory, and economic factors. Future advancements in satellite communication, including improved payloads and next-gen constellations, look promising. The synergy between 5G and satellite networks will shape the future of global connectivity.
Magazine
The age of connectivity we live in is marked by an explosion in smart devices and data consumption, underpinned by rapid urbanization and technological innovations. This necessitates superior communication infrastructure, especially with the rise of 4K/8K video streaming, online gaming, VR/AR, and shifts in work culture prompted by COVID-19. Despite 4G/LTE networks serving us till now, they lack in terms of speed and latency for present needs. Ensuring low-latency is paramount for real-time communications, particularly in sectors like autonomous vehicles, healthcare, and finance. Integrating terrestrial networks (like 5G) with non-terrestrial networks (like satellites) presents a solution, but is challenged by technical, regulatory, and economic factors. Future advancements in satellite communication, including improved payloads and next-gen constellations, look promising. The synergy between 5G and satellite networks will shape the future of global connectivity.
Magazine
Satellite constellations are advanced networks of strategically placed satellites designed to offer extensive global coverage, overcoming the limitations of single satellite systems. They’re pivotal in global communications, particularly in the era of 5G, enabling high-speed, low-latency connections. Different constellations operate at varying altitudes – Geostationary Earth Orbit (GEO), Medium Earth Orbit (MEO), and Low Earth Orbit (LEO) – each with unique benefits and challenges. As 5G emerges, these constellations will not only provide ultra-fast connectivity but will also bridge the digital divide, ensuring all corners of the world have access. Companies like SpaceX’s Starlink and Amazon’s Project Kuiper are pioneering efforts in this realm. However, while the opportunities are vast, challenges like interference management, space debris, and regulatory hurdles remain.
Magazine
Satellite constellations are advanced networks of strategically placed satellites designed to offer extensive global coverage, overcoming the limitations of single satellite systems. They’re pivotal in global communications, particularly in the era of 5G, enabling high-speed, low-latency connections. Different constellations operate at varying altitudes – Geostationary Earth Orbit (GEO), Medium Earth Orbit (MEO), and Low Earth Orbit (LEO) – each with unique benefits and challenges. As 5G emerges, these constellations will not only provide ultra-fast connectivity but will also bridge the digital divide, ensuring all corners of the world have access. Companies like SpaceX’s Starlink and Amazon’s Project Kuiper are pioneering efforts in this realm. However, while the opportunities are vast, challenges like interference management, space debris, and regulatory hurdles remain.
Magazine
The emergence of 5G Non-Terrestrial Networks (NTN) presents a revolutionary step in global digital connectivity, but it brings with it intricate regulatory and policy challenges. These directives play a pivotal role, influencing the design, services, and the very integrity of these networks. Key issues range from spectrum allocation and licensing to operational standards and the potential cyber threats these networks might face. Given the global nature of 5G NTN, coordinating regulations across international boundaries becomes paramount, as does addressing the growing concerns of space debris. Moreover, with the vast amount of data these networks handle, policies ensuring data privacy and cybersecurity are of utmost importance. Ultimately, understanding and navigating this complex regulatory landscape is crucial for the successful deployment and operation of 5G NTN.
Magazine
The emergence of 5G Non-Terrestrial Networks (NTN) presents a revolutionary step in global digital connectivity, but it brings with it intricate regulatory and policy challenges. These directives play a pivotal role, influencing the design, services, and the very integrity of these networks. Key issues range from spectrum allocation and licensing to operational standards and the potential cyber threats these networks might face. Given the global nature of 5G NTN, coordinating regulations across international boundaries becomes paramount, as does addressing the growing concerns of space debris. Moreover, with the vast amount of data these networks handle, policies ensuring data privacy and cybersecurity are of utmost importance. Ultimately, understanding and navigating this complex regulatory landscape is crucial for the successful deployment and operation of 5G NTN.
Magazine
5G Non-Terrestrial Networks (NTN) promise a new horizon in global communication with high-speed, low-latency features. Yet, as they usher in this new era, they also introduce significant security and privacy challenges. Key vulnerabilities, such as signal jamming, spoofing, and eavesdropping, pose risks to data integrity and user privacy. Addressing these threats demands a layered approach, utilizing advanced cryptographic methods, intrusion detection systems, and innovative AI/ML techniques. As we navigate the future of 5G NTN, it’s crucial to prioritize user security and privacy, balancing the immense potential of these networks with the inherent risks they present.
Magazine
5G Non-Terrestrial Networks (NTN) promise a new horizon in global communication with high-speed, low-latency features. Yet, as they usher in this new era, they also introduce significant security and privacy challenges. Key vulnerabilities, such as signal jamming, spoofing, and eavesdropping, pose risks to data integrity and user privacy. Addressing these threats demands a layered approach, utilizing advanced cryptographic methods, intrusion detection systems, and innovative AI/ML techniques. As we navigate the future of 5G NTN, it’s crucial to prioritize user security and privacy, balancing the immense potential of these networks with the inherent risks they present.
Magazine
From SpaceX’s Starlink providing unprecedented internet access, to the synergistic fusion of Eutelsat and OneWeb, and the ambitious visions of Amazon’s Project Kuiper, each initiative is redefining what is possible in global connectivity. Companies like SES, Viasat, Intelsat, Telesat, and Iridium continue to push the boundaries of satellite communication, while EchoStar and Boeing Satellites exemplify the fusion of legacy and innovation.
Magazine
From SpaceX’s Starlink providing unprecedented internet access, to the synergistic fusion of Eutelsat and OneWeb, and the ambitious visions of Amazon’s Project Kuiper, each initiative is redefining what is possible in global connectivity. Companies like SES, Viasat, Intelsat, Telesat, and Iridium continue to push the boundaries of satellite communication, while EchoStar and Boeing Satellites exemplify the fusion of legacy and innovation.

Join Our Newsletter

Subscribe for industry insights. Elevate your influence – promote with us!

Scroll to Top