Doomsday Data Drought: Data Scientist Shortage Gets Worse as GenerativeAI Supercharges Data

Data Scientists are already in short supply. One of the most promising areas to make Data Scientist more productive is Generative AI. However, while Generative AI will increase the productivity of Data Scientists, it will lead to an even more serve crunch in the Data Scientist supply.
Doomsday Data Drought: Data Scientist Shortage Gets Worse as GenerativeAI Supercharges Data

Data Scientist Shortage in the Generative AI Era

Today, the world of technology is changing at such a fast rate, with generative AI making huge impacts throughout organizations in terms of productivity and efficiency. The media is filled with negative talk of impending job losses and concerns that humans will be ousted from their work due to the rate of current advances. But is this fact or fiction? At smartR AI we believe there will be another outcome, and that organizations will need to bolster their teams with relevant skills to take full advantage of the opportunities that lie ahead with generative AI. A good example is that of data scientist professionals, who are already in short supply.


One of the most promising areas to make data scientists more productive is within generative AI. The rise of generative AI will provide data scientists powerful new capabilities to organize, synthesize and analyze data. This enhanced productivity will uncover deep insights and enable data-driven decision-making at unprecedented levels. However, while generative AI will increase the productivity of data scientists, I believe it will lead to an even more demand for data scientists.

When spreadsheets were introduced in the 1980s the world of finance was transformed. However, rather than losing jobs, finance grew from about 10% of U.S. GDP in 1980 to 20% by the early 2000s. While some low-level jobs were replaced, such as bank tellers, the headcount grew with new high skilled jobs in trading, financing, hedge funds, and other financial services.

A similar revolution is about to take hold within the data science environment due to generative AI. Mirroring the 1980s spreadsheets phenomenon that permeated business functions in the 1980s and 90s, generative models enable data experts to provide and deliver a far greater impact. With generative AI’s exponential data growth across industries, this emerging skill is crucial for competitiveness. Rather than reducing headcount, generative AI will drive a surging demand for data scientists familiar with its capabilities and limitations. Yet market dynamics fail to provide adequate data science talent.

Even before AI, the world faced a dangerous shortage of data professionals. According to Microsoft’s DEGREE + DIGITAL report (based on LinkedIn data), there’s no skill set that shows a more significant disparity between supply and demand. Also, based on the U.S. Bureau of Labor Statistics projections, the demand isn’t expected to let up anytime soon. The Bureau’s Office of Occupational Statistics and Employment Projections reports that the data science field is expected to grow by 36% from 2021-2031 – significantly faster than the average profession.

Additionally, external unstructured data is growing 62% annually (Gartner, Beauhurst et al). This type of data has been hard to utilize, as it doesn’t lend itself to standard analysis.  The proliferation of data new platforms, like JIRA, slack and Teams, has only added to the data chaos.

Generative AI has the ability to absorb and organize all data, much like the way spreadsheets organized financial data. This tool will allow data scientists to do more, and faster than ever before making data scientists much more valuable than ever before, thus stimulating the demand for this skillset.

With generative AI, you can pull data from multiple sources, such as databases, emails, collaborative tools, data lakes, SharePoint, spreadsheets, documents, PDFs, Websites, CRM, and ERP systems, and combine it into a cohesive whole. Instead of struggling to figure out how to extract the information from all these different sources, you can now just ask plain English questions. That ability to interact and experiment quickly allows data scientists to rapidly prototype and find the right data sources to answer questions, and it’s handed to them within moments.

By providing data scientists with the ability to combine disparate data sources, and mine data more effectively, will lead to deeper insights.

At smartR AI, I like to say “the world is drowning in data, but starving for knowledge.” Generative AI bridges this gap. By quickly and efficiently organizing data, that knowledge can now be extracted much more easily.

But ease of use isn’t the only factor that needs to be considered. We all know data is knowledge, and knowledge is power, and therefore your valuable data always needs to be kept private and secure. Who wants to gain deep insights on your market, and then find your competitors and other major technology corporations have access to that valuable data? So, my advice is this: choose, implement, and use a generative AI solution that ensures privacy, ease of use, and make sure you work with a company that continuously innovates. Innovation should be a daily habit

In a world where rapid change in technology is the norm, as it’s becoming with generative AI, the drought in data scientists is a critical factor that needs to be taken seriously. However, generative AI solutions can help organizations overcome some of their concerns, by providing existing staff with the ability to gain deep insights, analyze and supercharge data more easily and effectively without the knowledge this scarce commodity, data scientists, bring to the table.


Recent Content

2025 has seen major telecom and tech M&A activity, including billion-dollar deals in fiber, AI, cloud, and cybersecurity. This monthly tracker details key acquisitions, like AT&T buying Lumen’s fiber assets and Google’s $32B move for Wiz, highlighting how consolidation is shaping the competitive landscape.
Deutsche Telekom, Orange, and the Linux Foundation outline their 2025 cloud-native telecom roadmap, highlighting Kubernetes-native workloads, AI integration, observability, and zero-trust security models. Learn how open-source tooling, GitOps automation, and cultural transformation are reshaping next-gen telco operations.
India’s telecom sector is forecasted to grow 12–14% in FY25, hitting ₹3 lakh crore in revenue, with AI adoption, Vodafone-led tariff hikes, and R&D investment driving momentum. AI is not just boosting efficiency—it’s reshaping the future of telecom jobs, infrastructure, and policy. Sunil Bharti Mittal called for stronger private R&D efforts and smarter policy frameworks to harness India’s demographic advantage and scale the next era of AI-powered telecom innovation.
Fastweb+Vodafone has introduced the FastwebAI Suite, Italy’s first sovereign GenAI platform designed for both businesses and public institutions. Built on secure, in-country infrastructure and powered by MIIA, an Italian-trained LLM, the platform ensures regulatory compliance with EU AI laws. Early adopters include the Italian Senate, ISTAT, and top universities. With consulting via the FastwebAI Factory and upcoming modules for security and governance, this launch strengthens Vodafone’s role in Italy’s digital transformation.
The immersion cooling market was valued at US$ 287.7 Mn in 2023; It is estimated to advance at a CAGR of 17.9% from 2024 to 2034 and reach US$ 1.8 Bn by the end of 2034
NVIDIA and AMD will launch AI chips in China by July 2025, including the B20 and Radeon AI PRO R9700, tailored to comply with U.S. export rules. With performance capped under regulatory thresholds, these GPUs aim to support China’s enterprise AI needs without violating tech trade restrictions. NVIDIA is also rolling out a lower-cost chip based on Blackwell architecture, signaling a shift toward compliant yet capable AI compute options in restricted markets.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top