Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle

When Apple declared that LLMs can't reason, they forgot one crucial detail: a hammer isn't meant to turn screws. In our groundbreaking study of Einstein's classic logic puzzle, we discovered something fascinating. While language models initially stumbled with pure reasoning - making amusing claims like "Plumbers don't drive Porsches" - they excelled at an unexpected task.
Challenging the Notion That LLMs Can’t Reason: A Case Study with Einstein’s Puzzle
Image Credit: SmartR AI

Introduction to LLMs and the Reasoning Debate

A recent Apple publication argued that Large Language Models (LLMs) cannot effectively reason. While there is some merit to this claim regarding out-of-the-box performance, this article demonstrates that with proper application, LLMs can indeed solve complex reasoning problems.

The Initial Experiment: Einstein’s Puzzle


We set out to test LLM reasoning capabilities using Einstein’s puzzle, a complex logic problem involving 5 houses with different characteristics and 15 clues to determine who owns a fish. Our initial tests with leading LLMs showed mixed results:

  • OpenAI’s model correctly guessed the answer, but without clear reasoning
  • Claude provided an incorrect answer
  • When we modified the puzzle with new elements (cars, hobbies, drinks, colors, and jobs), both models failed significantly

Tree of Thoughts Approach and Its Challenges

We implemented our Tree of Thoughts approach, where the model would:

  1. Make guesses about house arrangements
  2. Use critics to evaluate rule violations
  3. Feed this information back for the next round

However, this revealed several interesting failures in reasoning:

Logic Interpretation Issues

The critics often struggled with basic logical concepts. For example, when evaluating the rule “The Plumber lives next to the Pink house,” we received this confused response:

“The Plumber lives in House 2, which is also the Pink house. Since the Plumber lives in the Pink house, it means that the Plumber lives next to the Pink house, which is House 1 (Orange).”

Bias Interference

The models sometimes inserted unfounded biases into their reasoning. For instance:

“The Orange house cannot be in House 1 because the Plumber lives there and the Plumber does not drive a Porsche.”

The models also made assumptions about what music Porsche drivers would listen to, demonstrating how internal biases can interfere with pure logical reasoning.

A Solution Through Code Generation

While direct reasoning showed limitations, we discovered that LLMs could excel when used as code generators. We asked SCOTi to write MiniZinc code to solve the puzzle, resulting in a well-formed constraint programming solution. The key advantages of this approach were:

  1. Each rule could be cleanly translated into code statements
  2. The resulting code was highly readable
  3. MiniZinc could solve the puzzle efficiently

Example of Clear Rule Translation

The MiniZinc code demonstrated elegant translation of puzzle rules into constraints. For instance:

% Statement 11: The man who enjoys Music lives next to the man who drives Porsche
% Note / means AND in minizinc
constraint exists(i,j in 1..5)(abs(i-j) == 1 / hobbies[i] = Music / cars[j] = Porsche);

If you would like to get the full MiniZinc code, please contact me.

Implications and Conclusions: Rethinking the Role of LLMs

This experiment reveals several important insights about LLM capabilities:

  1. Direct reasoning with complex logic can be challenging for LLMs
  2. Simple rule application works well, but performance degrades when multiple steps of inference are required
  3. LLMs excel when used as agents to generate code for solving logical problems
  4. The combination of LLM code generation and traditional constraint solving tools creates powerful solutions

The key takeaway is that while LLMs may struggle with certain types of direct reasoning, they can be incredibly effective when properly applied as components in a larger system. This represents a significant advancement in software development capabilities, demonstrating how LLMs can be transformative when used strategically rather than as standalone reasoning engines.

This study reinforces the view that LLMs are best understood as transformational software components rather than complete reasoning systems. Their impact on software development and problem-solving will continue to evolve as we better understand how to leverage their strengths while working around their limitations.


Recent Content

Indian telecom companies such as Jio and Airtel are moving beyond internal AI use cases to co-develop monetizable, India-focused AI applications in partnership with tech giants like Google, Nvidia, Cisco, and AMD. These collaborations are enabling sector-specific AI tools across healthcare, education, and agriculture, boosting operational efficiency, customer experience, and creating new revenue streams for telecom operators.
ETSI has published its first ISAC report for 6G—ETSI GR ISC 001—highlighting 18 use cases across healthcare, public safety, automation, and mobility. The report dives into deployment scenarios, sensing modalities, and KPIs like fine motion accuracy and sensing latency. It also outlines security, privacy, and sustainability guidelines for real-world ISAC integration into 6G networks.
In 2025, 5G surpasses 2.25 billion global connections, marking a pivotal shift toward mainstream adoption. While North America leads in performance and per capita usage, challenges in spectrum policy and enterprise integration remain. This in-depth report from 5G Americas explores the rise of Standalone 5G, the promise of 5G-Advanced, the reality of private network deployments, and the need for smart, forward-looking spectrum strategy.
AI is transforming the gaming industry, and Sierra ANN is leading the charge. With failure rates historically as high as 75%, game development has long relied on costly, trial-and-error processes. Now, AI is optimizing every stage—from graphics and animations to math balancing, audio, and QA. Sierra ANN’s AI-powered suite promises to double success rates and cut production costs in half, making game development faster, smarter, and more profitable.
SuperAI Singapore 2025 will bring together over 7,000 global leaders in AI, robotics, healthcare, finance, and climate tech at Marina Bay Sands on June 18–19. With three stages, a hackathon, and a $200K startup competition, the event unites Eastern and Western AI ecosystems to spotlight frontier breakthroughs. Speakers include Emad Mostaque, Balaji Srinivasan, and Sharon Zhou, with more than 150 tech visionaries expected to appear.
Confidencial.io will unveil its unified AI data governance platform at RSAC 2025. Designed to secure unstructured data in AI workflows, the system applies object-level Zero Trust encryption and seamless compliance with NIST/ISO frameworks. It protects AI pipelines and agentic systems from sensitive data leakage while supporting safe, large-scale innovation.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top