5G SA and Cellular V2X to reduce collisions – tests by Honda and SoftBank

Softbank, an operator in Japan, and Honda, an auto-company in Japan, started use-case-based testing to minimize collisions between vehicles and pedestrians. They are using 5G Standalone (5G SA) mobile communication system and Cellular V2X communication.
DT trials Automated driving with 5G Network Slicing and QoS with BMW, Valeo, Ericsson, and Qualcomm

Softbank, an operator in Japan, and Honda, an auto-company in Japan, started use-case-based testing with 5G Standalone and Cellular V2X to minimize collisions between vehicles and pedestrians.

Target Use Cases for 5G Standalone and Cellular V2X


The following are the three use cases for which SoftBank and Honda are conducting technology verifications. The team is utilizing SoftBank’s 5G SA experimental base station installed at Honda’s Takasu Proving Ground in Hokkaido Prefecture and Honda’s identification technology:

Reduce pedestrian collisions that are visible to vehicles

In a scenario where a pedestrian can be seen from the vehicle and when the onboard camera recognizes the danger of a collision, such as when a person enters the road, the car sends an alert to that person’s mobile device directly or via a MEC server straight away.

The pair discussed how this scenario would enable the user to take evasive action to avoid a possible accident with the automobile.

Reduce collisions involving pedestrians who are visible to vehicles - Honda and Softbank
Reduce collisions involving pedestrians who are visible to vehicles – Honda and Softbank
Reduce collisions between vehicles and pedestrians who are not visible

The vehicle queries mobile devices and other vehicles in the vicinity about the presence or absence of a pedestrian in an area with poor visibility, given that a pedestrian cannot be seen from the moving car owing to obstacles such as parked automobiles along roadways.

When the car approaches, the system informs the pedestrian and warns the vehicle about the pedestrian from the user’s mobile device if a pedestrian is present.

When there is a second vehicle in the area with limited sight and a possibility to observe the pedestrian, that car notifies the other vehicle about the pedestrian.

Reduce collisions involving pedestrians who are not visible to vehicles - Honda and Softbank
Reduce collisions involving pedestrians who are not visible to vehicles – Honda and Softbank
Reduce pedestrian collisions by sharing information on areas that are not visible to vehicles

This scenario is intended to illustrate how information from moving vehicles may be directed to the MEC server and used to inform drivers in the area about the poor visibility.

When a vehicle receives the warning and approaches an area with limited visibility, it queries the MEC server for information on pedestrians. The MEC server notifies the vehicle and the person if a pedestrian is detected.

This scenario may be used to transmit information on an area with poor visibility to cars that do not have a camera-based identification capability, ensuring that there are no collisions between vehicles and pedestrians regardless of whether cars have recognition capabilities.

Reduce collisions involving pedestrians by sharing information about areas not visible to vehicles
Reduce collisions involving pedestrians by sharing information about areas not visible to vehicles – Honda and Softbank

5G Technologies and Standards

5G Standalone

Softbank and Honda plan to use standalone 5G technology for the above use cases. 5G SA combines new 5G dedicated core equipment and 5G base stations, in contrast to the traditional standalone system using 4G core equipment and combining it with 5G base stations.

Multi-access Edge Computing (MEC)

MEC will be used to optimize and accelerate communications compared to cloud servers by putting data processing operations in places close to terminals, such as base stations.

3GPP Standard

The use cases will leverage the 3GPP standards for vehicle-to-vehicle, vehicle-to-infrastructure, vehicle-to-network, and vehicle-to-pedestrian communications.

Softbank and Honda V2X partnership

By establishing a 5G experimental base station at the Takasu Proving Grounds, SoftBank and Honda had already been collaborating on 5G-based connected vehicle technology verification.

Softbank and Honda plan to use network technology that will connect pedestrians and vehicles to create a cooperative society where people of all ages may move freely while enjoying mobility safely and with complete peace of mind. Softbank and Honda will collaborate to verify the 5G SA network with a view to linking it with cellular V2X and plan to complete it before the end of fiscal 2021.


Recent Content

Low-code platforms like VC4’s Service2Create (S2C) are transforming telecom operations by accelerating service delivery, reducing manual tasks, and simplifying integration with legacy systems. Discover how this technology drives digital transformation, improves efficiency, and future-proofs telecom networks.
Samsung has launched two new rugged devicesโ€”the Galaxy XCover7 Pro smartphone and the Tab Active5 Pro tabletโ€”designed for high-intensity fieldwork in sectors like logistics, healthcare, and manufacturing. These devices offer military-grade durability, advanced 5G connectivity, and enterprise-ready security with Samsung Knox Vault. Features like hot-swappable batteries, gloved-touch sensitivity, and AI-powered tools enhance productivity and reliability in harsh environments.
Nokia, Digita, and CoreGo have partnered to roll out private 5G networks and edge computing solutions at high-traffic event venues. Using Nokia’s Digital Automation Cloud (DAC) and CoreGoโ€™s payment and access tech, the trio delivers real-time data flow, reliable connectivity, and enhanced guest experience across Finland and international locationsโ€”serving over 2 million attendees to date.
AI Pulse: Telecomโ€™s Next Frontier is a definitive guide to how AI is reshaping the telecom landscape โ€” strategically, structurally, and commercially. Spanning over 130 pages, this MWC 2025 special edition explores AIโ€™s growing maturity in telecom, offering a comprehensive look at the technologies and trends driving transformation.

Explore strategic AI pillarsโ€”from AI Ops and Edge AI to LLMs, AI-as-a-Service, and governanceโ€”and learn how telcos are building AI-native architectures and monetization models. Discover insights from 30+ global CxOs, unpacking shifts in leadership thinking around purpose, innovation, and competitive advantage.

The edition also examines connected industries at the intersection of Private 5G, AI, and Satelliteโ€”fueling transformation in smart manufacturing, mobility, fintech, ports, sports, and more. From fan engagement to digital finance, from smart cities to the industrial metaverse, this is the roadmap to telecomโ€™s next eraโ€”where intelligence is the new infrastructure, and telcos become the enablers of everything connected.
In AI in Telecom: Strategic Themes, Maturity, and the Road Ahead, we explore how AI has shifted from buzzword to backbone for global telecom leaders. From AI-native networks and edge inferencing, to domain-specific LLMs and behavioral cybersecurity, this article maps out the strategic pillars, real-world use cases, and monetization models driving the AI-powered telecom era. Featuring CxO insights from Telefรณnica, KDDI, MTN, Telstra, and Orange, it captures the voice of a sector transforming infrastructure into intelligence.
In The Gateway to a New Future, top global telecom leadersโ€”Marc Murtra (Telefรณnica), Vicki Brady (Telstra), Sunil Bharti Mittal (Airtel), Biao He (China Mobile), and Benedicte Schilbred Fasmer (Telenor)โ€”share bold visions for reshaping the industry. From digital sovereignty and regulatory reform in Europe, to AI-powered smart cities in China and fintech platforms in Africa, these executives reveal how telecom is evolving into a driving force of global innovation, inclusion, and collaboration. The telco of tomorrow is not just a networkโ€”itโ€™s a platform for economic and societal transformation.

Download Magazine

With Subscription
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Subscribe To Our Newsletter

Scroll to Top