Private Network Check Readiness - TeckNexus Solutions

Verizon’s Leap in 5G: Custom Network Experiences with Network Slicing

Verizon makes a significant stride in 5G technology by successfully implementing network slicing, promising personalized network experiences based on individual application needs.
Verizon's Leap in 5G: Custom Network Experiences with Network Slicing

Verizon has achieved a breakthrough in utilizing network slicing in a full-fledged commercial 5G scenario, setting the stage for a new era of networking. Network Slicing advancement allows users to guide their data traffic across virtual networks, specifically tailored to align with the demands of distinct applications. In other words, customers can customize their network experience based on their specific requirements, optimizing network performance across various services.


This capability is engineered for network traffic on Verizon’s state-of-the-art standalone 5G core that is cloud-native, containerized, and virtualized. This offers service agility, flexibility, and automated scalability. The technological accomplishment is expected to reshape the way businesses and individuals utilize networks, offering a custom-tailored network experience for each application.

“By aligning network performance with specific application needs, network slicing opens up new possibilities for providing superior customer experiences. It offers a tailored service that lets our customers effectively use our network based on their specific needs,” stated Adam Koeppe, Senior Vice President of Technology Planning at Verizon.

In a recent demonstration, a 5G smartphone was successfully connected to multiple network slices, showcasing the ability to move data through the network without any glitches. The demonstration was powered by a standard smartphone, virtualized and non-virtualized RAN equipment currently in active field production, alongside Verizon’s multi-vendor standalone 5G core. This end-to-end test served as proof of the harmonious functioning of various components, from the device’s chipset, operating system, and application to the radio network base station and the core of the network.

The demonstration highlighted the potential of a complete data path on a virtual network slice, validating the technology and presenting a promising future for its practical applications. Network slicing, as an integral feature, will be incorporated as Verizon’s 5G standalone core evolves. To make the most of this network functionality, customers will need devices capable of supporting 5G network slicing.

Network slicing is an innovative feature exclusive to 5G technology. It leverages a virtualized network infrastructure to dynamically tailor network performance to align with the specific needs of distinct applications, optimizing overall network performance. The advanced capabilities, broader bandwidth, high speed, and reduced latency of 5G are inspiring the creation of a broad range of innovative use cases.

From IoT devices demanding minimal network resources to sophisticated smartphone applications that use data in countless ways, and to complex applications like gaming, AR/VR, and mixed reality requiring massive computing power and low latency on the network edge, network slicing could be a game-changer. AI and Machine Learning capabilities are expected to enable dynamic resource allocation and real-time network function adjustments to maintain optimal service levels and network resources for each use case.

Consider the example of utility company smart readers. These devices are not latency-sensitive, require less bandwidth, and don’t need mobility routing functions as they are stationary. In contrast, mobile online gaming can immensely benefit from specific upload and download speeds and low latency to offer an immersive experience. With network slicing, Verizon can provide network performance tailored to each application’s needs, delivering an efficient, dynamic network resource provision that adjusts in real-time to support the customer experience based on the applications they are using.

Verizon’s breakthrough in network slicing promises to bring an unprecedented level of customization and efficiency to network usage, revolutionizing the way we connect and communicate in the 5G era. As this technology continues to evolve, we can expect even more exciting innovations on the horizon.


Recent Content

Vantage will invest more than $25 billion to build Frontier, a 1,200-acre, 10-building campus totaling roughly 3.7 million square feet near Abilene, about 120 miles west of Dallas Fort Worth. The site is designed for ultra-high-density racks of 250kW and above, paired with liquid cooling for next-generation GPU systems. Construction has started, with first delivery targeted for the second half of 2026. Vantage expects more than 5,000 jobs through construction and operations. This is the company’s largest project to date and underscores its acceleration beyond a global footprint of 36 campuses delivering nearly 2.9GW of critical IT load. Vantage is a portfolio company of Digital Bridge Group.
Googles Pixel 10 line pushes more AI execution onto the device, signaling a shift from app-centric workflows to agent-driven assistance that enterprises and telecoms should prepare to operationalize. Pixel 10 introduces Magic Cue, a context-aware assistant that reads what you’re doing across apps and suggests the next action calling an airline, adding a calendar entry, or surfacing a reservation address without forcing a switch between apps.
Maxis will host China Mobile Internationals CMLink MVNO in Malaysia, expanding CMIs cross-border mobile footprint and deepening a wholesale partnership focused on 4G/5G services and innovation. China Mobile International (CMI) has selected Maxis as the host network for CMLink in Malaysia, formalized at the 2025 China Mobile SEA Cooperation Conference in Kuala Lumpur. The move extends CMLink’s presence beyond markets such as the UK, Singapore, Japan, Thailand, and Italy, and brings a cross-border, China Malaysia mobile proposition to students, professionals, and frequent travelers. For Maxis, it signals an assertive MVNO enablement strategy designed to monetize its network through wholesale while diversifying revenue.
AI buildouts and multi-cloud scale are stressing data center interconnect, making high-capacity, on-demand metro connectivity a priority for enterprises. Training pipelines, retrieval-augmented generation, and model distribution are shifting traffic patterns from north-south to high-volume east-west across metro clusters of data centers and cloud on-ramps. This is the backdrop for Lumen Technologies push to deliver up to 400Gbps Ethernet and IP Services in more than 70 third-party, cloud on-ramp ready facilities across 16 U.S. metro markets. The draw is operational agility: bandwidth provisioning in minutes, scaling up to 400Gbps per service, and consumption-based pricing that aligns spend with variable AI and data movement spikes.
Deutsche Telekom will roll out a free 5G+ Gaming option for eligible Magenta Mobil customers starting autumn 2025, integrating GeForce NOW for on-the-go cloud gaming with consistent responsiveness and stability. The service runs over Telekom’s 5G Standalone (SA) network using network slicing and L4S, with initial device support including Samsung’s Galaxy S24 Ultra and the S25 series, and more handsets to follow. GeForce NOW brings access to a catalog of 2,300+ supported titles spanning major game stores, with additional install-to-play titles being added, and day passes available (Performance and Ultimate tiers) for short-term access.
SoftBank will invest $2 billion in Intel, taking roughly a 2% stake at $23 per share and becoming one of Intels largest shareholders. It is a financial vote of confidence in a company trying to reestablish process leadership, scale a foundry business, and convince marquee customers to commit to external wafer orders. SoftBank has been assembling an AI supply-chain franchise that spans IP, compute, and infrastructure. It owns Arm, agreed to acquire Arm server CPU designer Ampere Computing, injected massive capital into OpenAI, and aligned with Oracle under the Stargate hyperscale AI initiative backed by the current U.S. administration.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025