MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite

MediaTek powered a smartphone with a 5G Non-Terrestrial Network (NTN) connection in a lab environment for the first time in collaboration with Rohde & Schwarz. 5G NTN technology will help boost service reliability across the globe by harnessing existing terrestrial networks and economies of scale in the cellular sector, making fast and reliable 5G connectivity much more accessible in unserved and underserved areas.
MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite
MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite

MediaTek reached a new 5G milestone by powering a smartphone with a 5G Non-Terrestrial Network (NTN) connection in a lab environment for the first time. Through a transfer of data to ITRI’s Next Generation NodeB network (gNB) test over a Low Earth Orbit (LEO) satellite channel emulated in collaboration with Rohde & Schwarz, MediaTek has demonstrated a world-first and showcased the capability of supporting satellite communications with commercial 5G smartphone hardware.


This achievement was completed in a MediaTek lab using Rohde & Schwarz test equipment, emulating a realistic LEO satellite constellation at 600km altitude where each satellite is moving extremely fast – nearly 27,000km per hour – in orbit. The smartphone was powered by MediaTek’s NR NTN-enabled test chip connected to the test gNB by ITRI. The test chip was designed to meet the 3GPP Release 17 spectrum-defined functionality to simulate Doppler and timing variation effects by LEO satellite channels.

“This milestone continues MediaTek’s long track record of 5G R&D innovations,” said HC Hwang, General Manager of Wireless Communication System and Partnership at MediaTek. “With this test, MediaTek successfully validated the capability of connecting a 5G smartphone to satellite networks, opening up the door for 5G satellite network development to bring ubiquitous connectivity around the world.”

MediaTek’s demonstration showcases how 5G NTN technology can be used for satellite communications by employing the same form factor and design components as a standard smartphone. 5G NTN technology will help boost service reliability across the globe by harnessing existing terrestrial networks and economies of scale in the cellular sector, making fast and reliable 5G connectivity much more accessible in unserved and underserved areas. In addition to the consumer use cases for expanded 5G access, there are a number of business and enterprise use cases including critical communications, transportation, agriculture, fleet and heavy machine management and Internet of Things (IoT) devices.

Gerald Tietscher, Vice President Signal Generators Product Division at Rohde & Schwarz, said, ”Ubiquitous connectivity is an important societal goal and Rohde & Schwarz is committed to providing test and measurement solutions that will help to bring the latest enabling technologies to the market.”

 

“In this lab testing, ITRI proves that its gNB (CU, DU, and RU) technology can be fully integrated into an NR NTN communication system,” said Dr. Pang-An Ting, General Director of Information and Communications Research Laboratories at ITRI. “As a frontier developer, we see a promising future of 3GPP NTN communication, as it supports wider coverage and seamless connectivity service while integrating with terrestrial networks.”

MediaTek is an active contributor to 3GPP Release 17 standardization work, which may help eliminate the need for traditionally bulky antennae on 5G NTN smartphones. Furthermore, solutions can leverage sophisticated 5G physical layer designs to overcome severe signal fading in time/frequency domains. Sharing the same protocol stack also allows NTN solutions to facilitate switching between cellular and satellite networks using the same device.


Recent Content

Hrvatski Telekom’s NextGen 5G Airports project will deploy Private 5G Networks at Zagreb, Zadar, and Pula Airports to boost safety, efficiency, and airport automation. By combining 5G Standalone, Edge Computing, AI, and IoT, the initiative enables drones, smart cameras, and AI tablets to digitize inspections, secure perimeters, and streamline operations, redefining aviation connectivity in Croatia.
Edge AI is reshaping broadband customer experience by powering smart routers, proactive troubleshooting, conversational AI, and personalized Wi-Fi management. Learn how leading ISPs like Comcast and Charter use edge computing to boost reliability, security, and customer satisfaction.
The emergence of 6G networks marks a paradigm shift in the way wireless systems are conceived and managed. Unlike its predecessors, 6G will embed Artificial Intelligence (AI) as a native capability across all network layers, enabling real-time adaptability, intelligent orchestration, and autonomous decision-making. This paper explores the symbiosis between AI and 6G, highlighting key applications such as predictive analytics, alarm correlation, and edge-native intelligence. Detailed insights into AI model selection and architecture are provided to bridge the current technical gap. Finally, the cultural and organizational changes required to realize AI-driven 6G networks are discussed. A graphical abstract is suggested to visually summarize the proposed architecture.
Telecom engineers know OSS systems aren’t broken—they just pretend to work. Outdated data, broken integrations, and overwhelming alerts create false confidence and slow operations. Discover how VC4’s Service2Create delivers real-time, trusted inventory and smarter workflows that engineers can actually rely on.
As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
ZTE and e& UAE have completed a successful Private 5G Network trial, showcasing high uplink speeds, multi-band adaptability, and ZTE’s NodeEngine Edge Computing platform. This trial enables rapid deployment, stronger enterprise connectivity, and practical use cases for smart industries, aligning with the UAE’s goal of becoming a digital innovation leader.
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top