Reimagining the Radio Access Network: The Rise of AI-Native RAN

As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
Reimagining the Radio Access Network: The Rise of AI-Native RAN

From SON to AI-Native: A Decade of RAN Intelligence

AI’s journey in the RAN began with rule-based Self-Organizing Networks (SON) that offered automation of basic tasks such as neighbor list updates and interference mitigation. However, these early solutions were often vendor-specific and siloed. The arrival of 5G sparked a new era — one that demands adaptable, data-driven intelligence to manage dense networks, multiple spectrum layers, and ultra-low latency use cases.


Enter the AI-native RAN: an architectural approach where AI isn’t bolted on — it is embedded across the entire RAN stack. This includes intelligent beamforming, dynamic spectrum allocation, predictive maintenance, and even signal processing at the physical layer. Models continuously learn and adapt using massive datasets — a leap forward from static SON logic.

With 6G on the horizon, the convergence of Generative AI (GenAI), Foundation Models, and real-time network telemetry opens the door to autonomous networks that can self-configure, self-optimize, and self-heal.

Architectural Shift: Building Blocks of AI-Native RAN

To enable AI at scale, the traditional RAN architecture must evolve — from rigid, vendor-locked boxes to disaggregated, cloud-native, and open ecosystems. This includes:

  • Open RAN (O-RAN): By separating control and user planes and defining open interfaces (A1, E2, O1), O-RAN enables third-party AI applications to interface with the network. The introduction of the RAN Intelligent Controller (RIC) — split into Near-Real-Time (near-RT) and Non-Real-Time (non-RT) — is central to this architecture.
  • Cloudification: Virtualized RAN (vRAN) and Cloud RAN (C-RAN) models enable dynamic resource allocation and seamless deployment of AI modules, akin to DevOps in IT.
  • AI-Optimized Hardware: Transitioning from ASICs to general-purpose CPUs, GPUs, and AI accelerators allows RAN components to support both signal processing and ML inference workloads at the edge.
  • MLOps in Telecom: Building a robust AI pipeline — from data collection to model training and deployment — is critical. AI-native RANs must incorporate DevOps-style workflows for continuous learning and deployment of ML models

Open RAN and the Power of the RIC

The RIC is a game-changer, bringing programmable intelligence to the RAN via xApps (near-RT) and rApps (non-RT). Examples include:

  • A near-RT xApp optimizing handover decisions in real-time based on user mobility.
  • A non-RT rApp analyzing week-long trends to update cell configurations for improved coverage or energy savings.

By decoupling intelligence from infrastructure, RIC enables a vibrant innovation ecosystem — similar to an app store model — where operators can choose from a variety of AI solutions, reducing vendor lock-in and speeding up innovation.

AI Use Cases Across the RAN

AI is touching every part of the RAN lifecycle. Here are some of the most impactful applications:

1. AIOps for Network Automation

AI for IT operations (AIOps) is revolutionizing network management:

  • Fault Prediction & Self-Healing: Models detect anomalies and trigger proactive remediation.
  • Performance Optimization: Algorithms tune parameters like antenna tilt and power in real time.
  • Closed-Loop Automation: Monitoring, analysis, decision, and action cycles complete autonomously.

Operators like Rakuten Mobile run hyper-automated networks with minimal operational staff, showcasing what full AIOps maturity looks like.

2. Generative AI in RAN

GenAI models — especially large language models (LLMs) — are now being used for:

  • Natural language troubleshooting
  • Automated script generation
  • AI-powered documentation and chatbot support for field engineers

These models democratize access to network intelligence and enable rapid knowledge transfer.

3. AI for Spectrum & QoS Optimization

  • Dynamic Spectrum Sharing: AI allocates frequencies based on real-time demand.
  • Traffic Steering: Prioritizes resources based on application QoS (e.g., video vs. IoT).
  • Interference Management: AI learns optimal cell coordination strategies, reducing drops and latency.

4. Energy-Efficient RANs

AI helps operators meet sustainability targets:

  • Dynamic Power Scaling: Deactivating carriers or antennas during low usage periods.
  • AI-Powered Sleep Modes: Predicting usage patterns to save power without degrading QoS

The Road Ahead: AI as a Strategic Differentiator

Looking forward, the RAN could become more than just a transport layer — it could evolve into a distributed AI fabric. AI-native architectures will not only support real-time optimization but also serve as edge inference platforms for enterprise and IoT use cases.

The emergence of cross-industry alliances like the AI-RAN Alliance reflects the strategic convergence of telecom, cloud, and semiconductor players. No single vendor can deliver the full vision alone — collaboration is key.

Final Thoughts

AI-native RANs offer more than operational efficiency. They represent a foundational shift in how networks are built, operated, and monetized. For telcos, the challenge is to align technology, talent, and partnerships around a clear AI transformation roadmap.

The question is no longer if AI will change the RAN — it’s how fast you are willing to embrace it.


Recent Content

Predicting AI’s future is difficult, but its impact on work and life is certain. Many organizations are hesitant, “nibbling around the corners” instead of embracing transformative applications. This slow adoption, however, has allowed us to better understand and utilize large language models. The AI revolution mirrors the steam engine transformation, with organizations needing to integrate AI to stay competitive. The biggest winners will be those that successfully integrate AI, gaining a significant advantage. The most significant transformation will be in knowledge management, how organizations make decisions and leverage collective intelligence.
The FCC has approved T-Mobile’s $4.4B acquisition of UScellular and a 50% stake in Metronet, marking a strategic push into rural 5G and fixed broadband. While the moves improve network reach and service speeds, regulators caution that market consolidation among the Big Three wireless providers may restrict long-term competition and innovation.
Americans spend $166 billion annually on mobile phone services, making up 4% of all household bill expenses. A new doxoINSIGHTS report reveals median monthly costs of $96, with wide variations by state and city. Nebraska and Dallas top the charts, while tools like doxoINSIGHTS help users compare costs and save on mobile bills.
Connected aviation is transforming airports with secure private networks, IoT, and real-time data. This article unpacks how smart airports boost efficiency, safety, and passenger experience while unlocking new business value with real-world case studies from Heathrow, Changi, Dubai, and more.
Connected aviation is reshaping airports into smart, seamless ecosystems inside and outside the terminal. This case study reveals how hubs like Changi, Schiphol, and SAN use private networks, IoT, and cross-team collaboration to improve passenger flow, airside operations, sustainability, and safety.
Connected aviation is reshaping airports with autonomous systems, from security drones to robotic baggage vehicles and self-driving tugs. Automation improves safety, cuts turnaround times, and delivers a smoother passenger experience. Learn how airports use AI and robotics to stay competitive.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top