5G Open RAN in US Defense: From Prototype to Full Deployment

The US Department of Defense has transitioned 5G Open RAN from prototype to full operational deployment, enhancing military logistics, automation, and cybersecurity. With industry partners like JMA Wireless and Federated Wireless, the DoD is leveraging 5G for mission-critical operations. This article explores how 5G Open RAN improves operational resilience, workforce efficiency, and future military applications, including spectrum management and AI-driven network optimization.
5G Open RAN in US Defense: From Prototype to Full Deployment

The implementation of 5G Open Radio Access Networks (Open RAN) has gained momentum in both the commercial and defense sectors. The US Department of Defense (DoD), in collaboration with industry leaders such as JMA Wireless and Federated Wireless, has successfully transitioned from prototype to full operational deployment of 5G Open RAN solutions. This article explores the journey of 5G Open RAN from its inception as a prototype to its full-scale deployment, highlighting its impact on mission readiness, operational resilience, and technological advancements in military infrastructure.

Early Development: DoD’s 5G Open RAN Prototyping Phase


Approximately five years ago, the DoD issued Requests for Proposals (RFPs) for 5G Open RAN prototypes. These RFPs aimed to evaluate the feasibility of implementing 5G technology in a private network environment to support military operations. Federated Wireless was among the companies awarded contracts to develop these prototypes, with the US Marine Corps Logistics Command in Albany, Georgia serving as a key testing site.

The DoD sought to integrate commercial 5G technology into private networks to enhance operational efficiency. This involved extensive design phases, large-scale testbed deployments, and the development of high-performance applications tailored to military use cases. The initial deployment included up to 30 radios to ensure robust coverage and seamless communication for warehouse logistics. The project focused on building a scalable network architecture that could accommodate mission-critical applications, including autonomous robotics and real-time logistics tracking. Additionally, security protocols were embedded from the start to ensure cybersecurity resilience and compliance with DoD requirements.

5G Open RAN Challenges and the Benefits of Full-Scale Deployment

The transition from prototype to full production was not without its challenges. The implementation required a deep understanding of both military and commercial requirements. The collaboration between government and industry partners facilitated a knowledge exchange that optimized the deployment process.

Some of the key benefits realized through the deployment of 5G Open RAN include:

  • Enhanced Operational Resilience: The high-speed, low-latency capabilities of 5G significantly improved warehouse management and logistics processes, reducing turnaround times for military equipment.
  • Workforce Optimization: The deployment of autonomous robotics and advanced communication systems streamlined inventory accuracy and workforce efficiency. The use of robotics and real-time tracking allowed for rapid identification and movement of mission-critical assets.
  • Security and Performance Standards: The Open RAN architecture introduced innovative security measures, ensuring cyber resilience while maintaining high operational performance. The integration of artificial intelligence and machine learning enhanced anomaly detection and predictive maintenance, further strengthening network reliability.

As the project evolved, the focus shifted from just deploying technology to understanding how 5G Open RAN could enable better decision-making and operational efficiency. The Marine Corps acknowledged the tangible benefits of the system and officially transitioned it into full operational use. By the end of the three-year testing phase, the system was deemed mission-ready, leading to its acquisition for long-term use.

Expanding 5G Open RAN Across US Military Operations

The success of the Albany, Georgia deployment set the stage for broader implementation within the DoD. Other military branches, including the Army, Navy, and Air Force, are now exploring 5G Open RAN solutions for their own infrastructure needs. The shift toward open, software-managed spectrum has paved the way for more scalable and flexible deployments across multiple military sites. Lessons learned from the Albany deployment have been instrumental in refining best practices for scaling the technology efficiently.

Industry experts anticipate that 5G Open RAN will play a pivotal role in military communications, logistics automation, and real-time data analytics. The collaboration between commercial telecom providers and the DoD ensures that future implementations will leverage cutting-edge advancements in 5G technology. By expanding 5G-enabled infrastructure, military bases can operate with greater agility, responsiveness, and adaptability to mission requirements.

The Future of 5G Open RAN: AI, Automation & Military Applications

Looking ahead, the focus will be on increasing the scale of 5G Open RAN deployments while addressing challenges such as spectrum management and cybersecurity. The introduction of automation in spectrum allocation through software-defined networks is expected to further enhance efficiency and reduce interference. Additionally, AI-driven network optimization will be incorporated to ensure high levels of performance across different deployment scenarios.

Moreover, new applications for 5G in military environments are emerging, including:

  • Advanced Spectrum Management: The ability to dynamically allocate and optimize spectrum usage will be crucial for operations in contested environments. Advanced spectrum-sharing algorithms will enable the seamless coexistence of multiple networks while preventing interference.
  • Rocket Launch Automation: Ongoing projects at Cape Canaveral, Florida, are leveraging 5G Open RAN to support Space Force missions by enhancing telemetry and real-time monitoring. This effort is expected to streamline launch processes, improve safety protocols, and provide more accurate weather-based launch assessments.
  • Expanded Use in Defense Infrastructure: The success of 5G Open RAN in logistics is likely to inspire further adoption in mission-critical operations such as battlefield communications and unmanned vehicle coordination. The DoD aims to integrate 5G networks into command and control operations, enhancing situational awareness and rapid decision-making.

5G Open RAN: Strengthening US Military Infrastructure for the Future

The journey from prototype to production for 5G Open RAN in the US Department of Defense demonstrates the potential of this technology to revolutionize military operations. Through strategic partnerships and continued innovation, 5G Open RAN is poised to enhance mission readiness, operational resilience, and the overall efficiency of defense infrastructure. As deployments scale up, the integration of 5G into military environments will continue to drive advancements in national security and technological leadership. Furthermore, the lessons learned from DoD deployments will provide valuable insights for the commercial sector, fostering new opportunities for private-sector applications of 5G Open RAN technology.


Recent Content

OpenAI and Meta are eyeing partnerships with Reliance Industries to bring AI tools like ChatGPT and Llama to millions in India. By integrating with Reliance’s telecom and digital networks, these tech giants aim to make AI more accessible and affordable. Reliance’s reach, infrastructure, and government ties make it an ideal partner to scale AI adoption across diverse markets—from cities to rural India.
IMDEA Networks, with partners UC3M, UAM, and UPM, launches DISCO6G—an ambitious 6G project integrating real-time communication and environmental sensing. Led by Jess Omar Lacruz, the initiative focuses on ISAC systems, intelligent surfaces, AI-driven signal optimization, and non-invasive diagnostics to enhance healthcare, smart mobility, and autonomous systems.
Private 5G is poised to transform India’s telecom and industrial landscape, enabling Industry 4.0 through automation, AI, and ultra-reliable connectivity. At the 5GCongress, TRAI chief AK Lahoti and DoT’s Manish Sinha projected ₹4 lakh crore revenue for the telecom sector by 2026, highlighting private 5G’s critical role in enhancing machine-to-machine communication, operational efficiency, and real-time data exchange. Government support through spectrum allocation and Make in India initiatives further boosts industry momentum.
Alcatel-Lucent Enterprise has launched its first Private 5G solution in partnership with Celona. This new offering enhances secure, low-latency connectivity across enterprise environments like manufacturing plants, ports, and campuses. Integrated with ALE’s OmniVista, OmniSwitch, and OmniAccess Stellar platforms, the network supports ultra-reliable industrial IoT applications and introduces advanced features like MicroSlicing, Aerloc, and Zero Trust Network Access.
MATRIXX Software introduces dynamic billing support for satellite and non-terrestrial network (NTN) services, enabling telecom operators to expand coverage, monetize emerging LEO partnerships, and unify revenue management. The platform supports flexible commercial models, powering growth in underserved regions and across consumer, enterprise, and wholesale markets.
Microsoft has upgraded its 365 Copilot with AI-driven tools—Researcher and Analyst—designed to handle deep research, strategic analysis, and data insights. Powered by OpenAI models, these features allow users to perform complex tasks like market planning, client reporting, and advanced analytics, while integrating data from platforms like Salesforce and Confluence.

Download Magazine

With Subscription
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top