Private Network Check Readiness - TeckNexus Solutions

Why Huawei’s New AI Chip Isn’t a Global Threat to Nvidia—Yet

Huawei’s new AI chip, the Ascend 910D, has raised concerns about Nvidia’s China business, but analysts say it lacks the global performance, ecosystem, and efficiency to compete with Nvidia’s H100 GPU. Built on 7nm technology with limited software support, Huawei’s chip may gain local traction but poses no major international threat—yet.
Why Huawei’s New AI Chip Isn’t a Global Threat to Nvidia—Yet

Market Jitters as Huawei Unveils New AI Chip

On April 28, 2025, Nvidia shares fell over 2% following a Wall Street Journal report that Huawei is entering the final testing phase for a new artificial intelligence chip—the Ascend 910D. The chip is positioned to compete directly with Nvidia’s high-end H100 GPU, which currently powers many of the world’s leading large language models (LLMs) and enterprise AI infrastructure.


This development triggered concerns among investors about potential disruption to Nvidia’s China business, especially in light of tightening U.S. export controls. However, many analysts were quick to note that while Huawei’s chip might gain traction within China, it poses little threat to Nvidia’s global dominance in the near term.

Huawei’s Ascend 910D Responds to U.S. Export Bans

The Huawei Ascend 910D is the latest in the company’s Ascend series of AI accelerators. Its launch is part of China’s broader effort to achieve semiconductor self-reliance, especially as U.S. sanctions restrict access to leading-edge chips and design tools.

The 910D aims to replace Nvidia’s H100 in Chinese data centers, but its development has been shaped by constraints. It reportedly uses SMIC’s 7nm process, a notable technical achievement given China’s limited access to EUV lithography tools. However, this process node is two generations behind what Nvidia uses in its Hopper-based H100 GPU, which is manufactured on TSMC’s 4nm node.

Despite this gap, Huawei claims that the Ascend 910D could outperform the H100 in specific AI workloads—although no independent benchmarks have yet been released.

Huawei Ascend 910D vs Nvidia H100: Technical Comparison

Huawei and Nvidia are both building AI accelerators to power the next generation of machine learning models, but they’re approaching the challenge from very different angles. Below is a detailed, section-by-section comparison of the two chips, focusing on architecture, memory, efficiency, scalability, and ecosystem readiness.

1. Compute Architecture & Raw Performance

While Huawei has made bold claims about the performance of the Ascend 910D, specific architectural details remain sparse. Nvidia’s H100, on the other hand, is well-documented and features innovations specifically optimized for training and inference of large AI models. Here’s how they compare on raw processing capability:

Feature Huawei Ascend 910D Nvidia H100 (SXM)
Architecture Proprietary (HiSilicon) Hopper (TSMC 4nm, 80B transistors)
Tensor Cores Not disclosed 640 4th-gen Tensor Cores
CUDA Cores N/A 16,896 CUDA Cores
Peak Compute (FP8) Not disclosed (claimed superior) Up to 3,958 TFLOPS
Peak Compute (FP64) N/A 67 TFLOPS (Tensor Core)
AI Optimizations Proprietary Transformer Engine, CUDA, cuDNN

Huawei claims performance parity (or superiority) to the H100, but without transparent specifications or third-party validation, Nvidia remains the gold standard.

2. Memory and Bandwidth

Memory bandwidth and speed are essential in high-performance AI workloads, where moving data quickly can significantly improve training times. Nvidia’s H100 uses cutting-edge HBM3 memory, while Huawei’s solution is based on older memory generations:

Feature Huawei Ascend 910D Nvidia H100 (SXM)
Memory Type HBM2 or HBM2E (older) HBM3
Capacity Not disclosed 80GB or 96GB
Bandwidth Not disclosed Up to 3.35 TB/s

The Nvidia H100 benefits from the latest memory technologies, providing far higher memory bandwidth and data throughput—critical for training large models and real-time inference.

3. Power Efficiency and Scalability

Efficiency is not just about performance per chip—it’s also about how well chips perform at scale, especially in massive data centers where power and cooling costs can be prohibitive. Huawei and Nvidia approach scaling very differently:

Feature Huawei Ascend 910D Nvidia H100 (SXM)
Power Draw (TDP) Higher, less efficient Up to 700W (optimized)
Cooling More intensive Data center-optimized
Scalability Optical mesh (910C/910D) NVLink, NVSwitch, InfiniBand

Huawei uses an all-optical interconnect approach in some Ascend systems, linking hundreds of chips to compete in aggregate throughput. This brute-force strategy, however, often leads to inefficiencies in power and cooling, making it less suitable for enterprise-scale deployments without subsidies.

4. Software Ecosystem & Developer Tools

A chip is only as powerful as the tools that support it. Nvidia has spent over a decade building a full-stack software ecosystem with widespread developer adoption. Huawei is still building out its platform, and while it’s progressing quickly, it has a long way to go in terms of tooling and global support:

Feature Huawei Ascend 910D Nvidia H100
Ecosystem MindSpore, Ascend AI CUDA, cuDNN, TensorRT
Developer Support Limited Extensive, global
Toolchain Maturity Emerging Highly optimized
AI Framework Support Moderate Fully supported (TensorFlow, PyTorch, etc.)

Nvidia’s CUDA ecosystem remains unmatched. It’s not just about chip performance—it’s about the entire stack: optimized software, drivers, libraries, and community support. Developers globally continue to prefer Nvidia because the end-to-end ecosystem dramatically shortens time-to-production.

Ascend 910D Gains Support from China’s Domestic Tech Sector

Despite global limitations, Huawei’s chips have gained traction within China’s borders. Domestic firms like ByteDance and major telecom providers have placed large orders for the Ascend 910B, 910C, and now the 910D.

Several factors drive this:

  • Policy incentives for buying domestic chips
  • Export bans on Nvidia H100/H20
  • National security concerns and data sovereignty
  • Financial subsidies for infrastructure built around Ascend chips

This creates a parallel AI hardware ecosystem that, while less efficient than Nvidia’s, is “good enough” for many Chinese applications. The Chinese government’s long-term semiconductor strategy is pushing forward regardless of cost.

Why Huawei’s AI Chips Face Global Trust and Efficiency Hurdles

Outside of China, however, Huawei faces significant hurdles. Analysts argue that adoption is limited not only by technical factors (e.g., lower memory bandwidth, limited scalability) but also by political concerns and lack of trust in Chinese technology.

As Richard Windsor of Radio Free Mobile noted:

“There’s a clear disadvantage for Chinese AI when it comes to global perception. Huawei’s hardware may gain traction domestically, but its international appeal will remain limited by efficiency, cost, and trust.”

This makes the Ascend 910D an important national solution, but not a viable global Nvidia competitor—at least not yet.

Analysts Reaffirm Nvidia’s AI Lead Despite Huawei Challenge

Despite the stock dip, analysts remain bullish on Nvidia’s prospects.

  • Matt Bryson (Wedbush Securities) reaffirmed an “outperform” rating on Nvidia stock, citing Huawei’s manufacturing limitations and lack of node parity.
  • Gil Luria (DA Davidson) estimates that up to 40% of Nvidia’s revenue could be linked to China—much of it unofficially—but cautions that complete replacement is unlikely due to technical inferiority and ecosystem dependence.

China’s Policy, Not Huawei’s Chip, Is Nvidia’s Bigger Risk

The more serious threat to Nvidia may be regulatory, not technical. China could mandate the use of Huawei chips in sensitive industries or critical infrastructure, which would force Nvidia out regardless of product superiority.

  • Nvidia already forecast a $5.5 billion hit from the H20 export ban.
  • JPMorgan estimates Nvidia could lose up to $16 billion in China revenue in 2025 under worst-case scenarios.
  • In FY2025, Nvidia generated approximately $17 billion (13%) of its total revenue from China.

Nvidia Expands U.S. Supply Chain to Counter China Risk

To mitigate the China risk, Nvidia is scaling its U.S. manufacturing and supply chain, pledging $500 billion in domestic investments through partnerships with TSMC, ASML, and American fabs.

CEO Jensen Huang’s recent visit to China underscores the company’s desire to maintain ties while navigating a volatile policy landscape.

What Huawei’s Chip Means for the Global AI Hardware Landscape

Huawei’s Ascend 910D, while not yet a global contender, signals a maturing AI hardware ecosystem in China. The country’s ability to design competitive chips despite sanctions speaks to its strategic determination.

Still, performance parity is not enough. In today’s AI economy, success depends on:

  • Software ecosystem lock-in
  • Energy efficiency and TCO
  • Hardware-software co-optimization
  • Global developer adoption

This is where Nvidia remains multiple years ahead—and likely to stay so without major disruption in chip manufacturing technologies.

Huawei vs Nvidia: Clear Global Leader Despite Growing Local Rival

After examining the critical aspects of chip design—from compute performance to software stack—it’s clear that Huawei is making strides, particularly in a constrained regulatory environment. But Nvidia continues to lead in nearly every metric that matters for global AI adoption:

Metric Nvidia H100 (SXM) Huawei Ascend 910D
Architecture Hopper, 4nm Proprietary, 7nm (SMIC)
Memory Bandwidth 3.35 TB/s (HBM3) Lower (HBM2/2E)
Ecosystem Maturity CUDA, TensorRT, cuDNN MindSpore, Ascend
Power Efficiency High Lower
Availability Global China-only (May 2025 test)
Software Integration Excellent Developing
Independent Benchmarks Verified Not released

Not a Global Threat—Yet

The Huawei Ascend 910D is a major step forward for China’s AI ambitions. It reflects real progress in chip design under sanctions and may eventually serve as a viable national alternative to Nvidia for many use cases inside China.

However, it currently lacks the technical polish, ecosystem integration, and international trust to challenge Nvidia’s global dominance. As AI models grow in size and complexity, Nvidia’s ability to provide efficient, scalable, and integrated solutions keeps it firmly in the lead.

The real battle may be less about chip specs—and more about the politics of technology sovereignty.


Recent Content

The 4.44.94 GHz range offers the cleanest mix of technical performance, policy feasibility, and global alignment to move the U.S. ahead in 6G. Midband is where 6G will scale, and 4 GHz sits in the sweet spot. A contiguous 500 MHz block supports wide channels (100 MHz+), strong uplink, and macro coverage comparable to C-Band, but with more spectrum headroom. That translates into better spectral efficiency and a lower total cost per bit for nationwide deployments while still enabling dense enterprise and edge use cases.
Palo Alto Networks PAN-OS 12.1 Orion steps into this gap with a quantum-ready roadmap, a unified multicloud security fabric, expanded AI-driven protections and a new generation of next-generation firewalls (NGFWs) designed for data centers, branches and industrial edge. The release also pushes management into a single operational plane via Strata Cloud Manager, targeting lower operating cost and faster incident response. PAN-OS 12.1 automatically discovers workloads, applications, AI assets and data flows across public cloud and hybrid environments to eliminate blind spots. It continuously assesses posture, flags misconfigurations and exposures in real time and deploys protections in one click across AWS, Azure and Google Cloud.
SK Telecom is partnering with VAST Data to power the Petasus AI Cloud, a sovereign GPUaaS built on NVIDIA accelerated computing and Supermicro systems, designed to support both training and inference at scale for government, research, and enterprise users in South Korea. By placing VAST Data’s AI Operating System at the heart of Petasus, SKT is unifying data and compute services into a single control plane, turning legacy bare-metal workflows that took days or weeks into virtualized environments that can be provisioned in minutes and operated with carrier-grade resilience.
Beijing’s first World Humanoid Robot Games is more than a spectacle. It is a live systems trial for embodied AI, connectivity, and edge operations at scale. Over three days at the Beijing National Speed Skating Oval, more than 500 humanoid robots from roughly 280 teams representing 16 countries are competing in 26 events that span athletics and applied tasks, from soccer and boxing to medicine sorting and venue cleanup. The games double as a staging ground for 5G-Advanced (5G-A) capabilities designed for uplink-intensive, low-latency, high-reliability robotics traffic. Indoors, a digital system with 300 MHz of spectrum delivers multi-Gbps peaks and sustains uplink above 100 Mbps.
India has cleared a high-capacity semiconductor fabrication plant slated to produce up to 50,000 300mm wafers per month, a cornerstone move to localize chip supply for telecom, cloud, automotive, and industrial electronics. India’s electronics and IT leadership confirmed plans for a large-scale silicon fab with a targeted capacity of 50,000 wafers per month. The project is being led by Tata Group, with technology partnership support widely expected from a specialty foundry player, aligning with earlier approvals for mature-node logic and power processes. The fab is planned in Gujarat’s industrial corridor, building on India’s recent momentum in assembly, test, and packaging investments.
Infosys will acquire a 75% stake in Telstra’s Versent Group for approximately $153 million to launch an AI-led cloud and digital joint venture aimed at Australian enterprises and public sector agencies. Infosys will hold operational control with 75% ownership, while Telstra retains a 25% minority stake. The JV blends Telstra’s connectivity footprint, Versents local engineering depth and Infosys global scale and AI stack. With Topaz and Cobalt, Infosys can pair model development and orchestration with landing zones, FinOps, and MLOps on major hyperscaler platforms. Closing is expected in the second half of FY 2026, subject to regulatory approvals and customary conditions.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025