IS-Wireless Powers University of York’s Research with Private 5G Network

IS-Wireless has deployed a Private 5G network at the University of York to support advanced telecommunications research. The network, based on Open RAN technology, will facilitate projects like YO-RAN and REACH, driving innovation and efficiency in mobile communications.
IS-Wireless Powers University of York Research with Private 5G
Image Credit: Is-Wireless

IS-Wireless Deploys Private 5G Network at the University of York

IS-Wireless, a leading provider of 5G solutions, has announced the deployment of its Private 5G network at the University of York. This deployment aims to support the university’s research into new telecommunications technologies. This project marks another significant rollout in the UK by the Polish company. Selected through a competitive process, IS-Wireless will provide essential components of the 5G network, including the Near-Real Time RIC, O-CU, and O-DU, along with robust support services.

Overcoming Challenges in Advanced 5G Network Implementation


The university faced the challenge of needing a highly reliable and advanced 5G network to support its research projects. This network must handle the demands of cutting-edge research while being flexible enough to integrate with new technologies and methodologies. Additionally, the implementation needed to adhere to the Open RAN model to ensure future-proofing and interoperability.

Tailored 5G Solutions for Cutting-Edge Research

IS-Wireless provided a comprehensive Private 5G network tailored to the university’s needs. The installation includes key 5G components such as the Near-Real Time RIC, O-CU, and O-DU. This setup will be used by the university and its partners for two primary research projects, YO-RAN and REACH. These projects focus on enhancing mobile networks’ efficiency and accessibility using Open RAN technology. The university will also leverage this network to develop and test xApps aimed at improving energy efficiency and network control.

Expert Endorsements Highlight Networkโ€™s Impact on Research

Professor David Grace from the School of Physics, Engineering and Technology at the University of York emphasized the significance of these projects: “The Private 5G network provided by IS-Wireless will enable us to develop and test new solutions that will enhance Open RAN-based mobile communications worldwide.” This statement underscores the critical role of the network in advancing telecommunications research.

Why IS-Wirelessโ€™s Open RAN Model is Ideal for Innovation

The choice of IS-Wireless was driven by its proven expertise and comprehensive 5G solutions. The company’s Private 5G network is built on the Open RAN model, featuring Liquid RAN, which focuses on efficient resource use. This technology aligns with the university’s goals of innovation and sustainability.

Key Benefits of the Private 5G Network Deployment

The deployment offers numerous benefits:

  • Compatibility with O-RAN Alliance standards ensures system interoperability and future-proofing.
  • Training and maintenance services support optimal operation.
  • Remote and instant installation enables quick deployment.
  • xApp SDK provides tools for developing and testing applications.
  • Openness to recommended modifications in the RIC enhances flexibility.

Driving Global Telecommunications Innovation

This deployment is a significant step in advancing telecommunications research. The Private 5G network at the University of York will facilitate groundbreaking research that could lead to more efficient and accessible mobile networks globally. The focus on Open RAN technology will also drive innovation in network infrastructure.

IS-Wireless: Leading the Charge in 5G Research Support

IS-Wireless plays a pivotal role in this initiative.

Artur Chmielewski, Head of Sales at IS-Wireless, expressed the company’s enthusiasm: “We are excited to work with one of the worldโ€™s top universities and a member of the prestigious Russell Group. The IS-Wireless Private 5G network will be a great tool for research, supported by our experience from many European Union-level R&D projects.”

Collaborative Efforts in Advancing Telecommunications Research

The university and its partners are crucial in utilizing the network for research and development. Their collaboration will focus on creating and testing new applications to enhance network performance and efficiency.

Current Progress of the Private 5G Network Deployment

The deployment of the IS-Wireless Private 5G network at the University of York is currently underway. This network will soon support the YO-RAN and REACH research projects, marking a new chapter in telecommunications research.

The installation and initial testing phases are expected to be completed within the next few months. Full operational status is anticipated by the end of the year, enabling the research projects to commence in earnest.

Positive Feedback from Academia and Telecommunications Experts

The University of York and IS-Wireless have received positive feedback from the academic and telecommunications communities. This collaboration is seen as a significant step toward innovative research and development in the field of telecommunications.

By deploying its Private 5G network at the University of York, IS-Wireless is not only supporting critical research but also demonstrating the potential of Private Networks to drive technological advancements in academia and beyond.


Recent Content

Web3 is redefining the telecom industry by introducing decentralized infrastructure, blockchain-based billing, smart contracts, NFTs, and digital identity. This article explores how telcos can evolve from connectivity providers to key players in Web3 ecosystemsโ€”offering programmable services, token economies, and secure, user-centric digital experiences.
As the telecom industry celebrates World Telecom Day 2025, the theme is clear: connectivity is not just infrastructureโ€”it is empowerment. It is what enables a student in a rural village to access world-class education, a farmer to monitor crops via smart sensors, or a doctor to conduct remote surgery with millisecond precision.
AT&T will acquire Lumenโ€™s consumer fiber business in a $5.75B deal to expand its broadband coverage to 60 million U.S. locations by 2030. The transaction gives AT&T access to 4M enabled locations, 1M subscribers, and new metro markets like Seattle and Phoenix. Meanwhile, Lumen refocuses on enterprise innovation and AI-first networking.
As 5G expands, reduced-capability (RedCap) and enhanced RedCap (eRedCap) IoT devices face pressure to transition from 4G. But adoption has lagged due to price and value challenges. This article explores why OEMs are holding back, the role of low-power DSP modem platforms like Cevaโ€™s, and how software-defined radio and flexibility are key to unlocking 5Gโ€™s potential in high-volume, low-bandwidth IoT applications.
Verizon joins the Buffalo Bills as a Founding Partner of Highmark Stadium, bringing 5G connectivity, sustainability-focused services, and smart venue technology to the teamโ€™s new home in Orchard Park. The partnership includes ownership of the DAS system, advanced operational tools, AR fan features, and exclusive Verizon customer activationsโ€”setting a new benchmark for connected sports venues by 2026.
Singtel launches 5G+, introducing nationwide network slicing for both consumers and enterprises, a global first. This upgrade brings faster speeds, lower latency, stronger indoor coverage, and real-time cyber protection to over 1.5 million users. Singtel 5G+ enhances mobile connectivity with the 700MHz spectrum, priority plans, and app-based slicing for business-critical apps, aligning with Singaporeโ€™s Smart Nation goals.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top