Turkcell and Ericsson showcase 5G network slicing success

Turkcell and Ericsson have unveiled a successful 5G Standalone network slicing proof of concept, paving the way for personalized and efficient connectivity solutions in Tรผrkiye.
Turkcell and Ericsson showcase 5G network slicing success

Turkcell, in partnership with Ericsson, has recently achieved a significant breakthrough in 5G connectivity by successfully completing a 5G Standalone (SA) network slicing proof of concept (PoC). This pioneering demonstration not only highlights the ability to instantaneously create tailored 5G network slices to address the distinct connectivity demands of both enterprises and consumers but also showcases the ability to manage multiple slices on a single 5G device. This development is crucial for introducing flexible charging schemes and underscores the transformative potential of 5G SA networks.


Understanding Network Slicing

At its core, network slicing involves the partitioning of a single physical network into multiple virtual networks, allowing each slice to serve a specific purpose or application. During the PoC, Turkcell and Ericsson exhibited how different user profiles, such as ‘work’ and ‘personal’, could be assigned to separate network slices on a 5G device. This innovation grants developers, businesses, and users unprecedented control over their network capabilities, emphasizing the strategic advantage of adopting 5G SA technology.

Technical Infrastructure and Execution

The trial was executed on a cutting-edge 5G Core testbed located within Turkcell’s Telco Cloud infrastructure. This setup included Ericsson’s versatile dual-mode 5G Core and innovative Dynamic Radio Resource Partitioning for 5G RAN Slicing, alongside the comprehensive Ericsson Radio System suite. Ericsson Orchestrator facilitated crucial automation capabilities, while Ericsson Charging introduced a novel approach to billing based on specific slice characteristics.

Key to the PoC’s success was the use of Ericsson Dynamic Network Slice Selection, which incorporates the User Equipment Route Selection Policy (URSP). This technology enables a singular device to access multiple network slices concurrently, ensuring a seamless separation of services and optimizing traffic management to enhance the user experience.

Advancing Automation for 5G Use Cases

Ericsson Orchestrator is instrumental in automating operations across both virtual and cloud-native network functions (VNFs and CNFs), supporting the orchestration of resources, VNF lifecycle management, and service orchestration. This level of automation is crucial for enabling complex 5G SA applications across both the telecommunications and enterprise sectors.

Turkcell’s Vision for a Nationwide 5G SA Network

This PoC marks a significant milestone in Turkcell’s strategy to deploy a comprehensive, national 5G SA network capable of meeting the evolving needs of both businesses and the general populace in Tรผrkiye. Prof. Dr. Vehbi ร‡aฤŸrฤฑ Gรผngรถr, Turkcell’s Chief Network Technologies Officer, highlighted the PoC’s role in advancing towards offering innovative 5G services, emphasizing the potential of network slicing to redefine connectivity solutions and enhance service delivery.

The Economic Implications of Network Slicing

Network slicing presents a myriad of commercial opportunities for Communication Service Providers (CSPs), particularly in catering to the enterprise market. According to Ericsson, the revenue potential enabled by network slicing for CSPs is projected to hit USD 45 billion by 2025, indicating a vast field of opportunities in leveraging this technology.

IลŸฤฑl Yalรงฤฑn, Vice President and Head of Ericsson Tรผrkiye, reaffirmed Ericsson’s commitment to supporting Turkcell in realizing its 5G ambitions and maximizing the value proposition for both individual and enterprise customers. The ongoing collaboration between Turkcell and Ericsson has already led to several significant advancements in 5G technology, including the deployment of 5G-connected autonomous robots, sensor networks, private 5G networks, and enhanced mobile broadband (eMBB) and fixed wireless access (FWA) through network slicing.


Recent Content

Smart mobility is reshaping how the world moves, powered by 5G, AI, and edge computing. From autonomous vehicles and real-time logistics to AI-driven drones and connected public transport, intelligent transportation systems are redefining urban mobility, logistics, and industrial automation. As global investment and collaboration grow, the transportation industry is transforming into a $11.1 trillion smart ecosystem focused on sustainability, efficiency, and connectivity.
FinTech, private 5G networks, and AI are converging to reshape digital finance across industries. From embedded payments and super apps to AI-driven credit scoring and secure M2M transactions, this $2 trillion opportunity is powered by mobile technology, cloud infrastructure, and regulatory evolution. Leaders must act fast to unlock new revenue, scale inclusion, and secure digital ecosystems.
The future of sports and entertainment is fan-first, immersive, and data-driven. Powered by D2C models, 5G networks, AI content creation, and super apps, industry leaders are reimagining fan experiencesโ€”from Bundesliga’s mobile strategy to Web2.5’s tokenized communities. The shift is not just technical but cultural, prioritizing personalization, monetization, and real-time interaction across every touchpoint.
As one of the worldโ€™s fastest-growing digital economies, India is emerging as a key battleground for 5G expansion. While countries like China and South Korea have led the global 5G race, Indiaโ€™s rapid deployment and sheer market scale make its progress especially noteworthy. With over 1.4 billion people and a thriving mobile-first economy, Indiaโ€™s 5G rollout is not just about faster connectivityโ€”itโ€™s about reshaping industries, enabling smart cities, and unlocking new economic opportunities.
Southern Linc has teamed up with OneLayer to upgrade its CriticalLinc LTE network, focusing on advanced network management and robust security measures. This partnership enhances device management and threat detection, ensuring high reliability for critical communications.
Samsung Electronics and KT Corporation have entered a strategic partnership to develop 6G network technologies, focusing on improving signal quality and system performance. Their research prioritizes advanced antenna systems like X-MIMO and AI-driven wireless communication enhancements. The companies aim to tackle high-frequency signal loss in the 7 GHz band and improve network reliability through beamforming and multi-spatial transmission.

Download Magazine

With Subscription
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGenโ€™s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top