6G: The Role of Brain-Inspired Computing by King’s Engineers

6G Technology: The Role of Brain-Inspired Computing by King's Engineers" highlights the groundbreaking research that aims to revolutionize wireless communications. By using neuromorphic computing, the research seeks to provide faster, more energy-efficient, and AI-integrated 6G telecommunications, potentially transforming industries such as mobile healthcare, telecommunications, and robotics.
Engineers from King's College Use Brain-Like Computing for Better 6G Technology

Two engineers from King’s College, London, are venturing into a promising research project that focuses on neuromorphic computing, a form of computing inspired by the functioning of the human brain, to enhance wireless technology drastically. This initiative is backed by significant scientific entities – the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the National Science Foundation (NSF) in the United States, indicating the importance and potential of the project.


The fundamental goal of this research is to significantly enhance the speed and energy efficiency of computing and wireless telecommunications. By achieving these improvements, there will be a major positive impact across various industries, especially mobile healthcare, telecommunications, and robotics. The approach taken here emphasizes a higher level of artificial intelligence (AI) integration into wireless communications, offering a vast array of possibilities in service improvements and user experience enhancements.

The primary team leading this initiative consists of an international collaboration of high-profile academics. Professor Osvaldo Simeone and Dr. Bipin Rajendran from the Department of Engineering at King’s College are working in conjunction with Professor Vincent Poor from Princeton University. They are focusing on how neuromorphic computing can be effectively leveraged for the more efficient delivery of information across telecommunications networks. This could potentially underpin the development of revolutionary services and applications in the upcoming 6G networks.

As highlighted by Professor Simeone, the recent widespread implementation of 5G has already marked a significant transition in telecommunications systems. The global system is evolving to facilitate the transfer of intelligence between machines better. Despite this progress, Simeone pointed out that current systems still encounter limitations. In particular, conventional communication systems are built on a framework of transmitting and storing information in ‘bits,’ which restricts their ability to adapt to new situations or optimize their resource consumption based on the specific nature of the information being exchanged.

Dr. Rajendran further explained the characteristics of neuromorphic systems. These systems are engineered to mimic the behavior of neural networks found in the human brain. One of the key techniques used in this approach involves Spiking Neural Networks (SNNs) that transmit information through the generation of ‘spikes.’ This operational model allows for highly efficient, event-driven computations as it processes data only when necessary.

The team believes that neuromorphic computing has several distinct advantages that make it superior to traditional computing. Unlike conventional computers, these neuromorphic systems are designed to learn and adapt in real time. Additionally, they are noted for their exceptional energy efficiency. When these factors are combined, they present a compelling case for the incorporation of neuromorphic computing within telecommunications. The introduction of this technology in mobile devices could lead to the provision of sophisticated AI tools, better services, and a much more customized experience based on user requirements.

To push this frontier technology forward, Professor Simeone and Dr. Rajendran have engaged in collaborative efforts with renowned industrial partners, including Intel Labs, NVIDIA, and AccelerComm. With the collective knowledge and experience of these industrial leaders, the King’s researchers aim to explore the core principles, algorithms, and design techniques involved in the creation of neuromorphic communications, pushing the boundaries of what’s currently achievable in telecommunications technology.


Recent Content

EnterpriseWeb announced that it will premiere the first telco-grade demonstration of generative AI for network service orchestration today at Informa’s Big 5G event in Austin, Texas. The company, which ran the telecom industry’s first Network Function Virtualization proof-of-concept in 2013 and is known for its advanced automation capabilities, partnered with KX to enable next generation AI-powered Telecom operations.
OneWeb and iSAT Africa LTD have signed a Distribution Partnership Agreement to bring high-speed, low-latency broadband connectivity across Africa. As a result, iSAT Africa will drive a shared objective of connecting the unconnected and serving the underserved communities of Africa, which in turn will help iSAT Africa grow the regional economy, improve access to education and health care, and give people and communities across the continent more power by providing reliable, high-speed broadband connection.
AT&T is formalizing plans to lease spectrum to AST SpaceMobile in order to bolster its coverage using satellite connectivity. This move aims to integrate satellite connectivity into AT&T’s mobile access technologies, expanding its coverage to unserved and underserved areas. AST SpaceMobile plans to launch its satellite constellation in early 2024, pending necessary approvals and funding.
Mobi, Hawaiʻi’s wireless carrier, has announced an MVNO agreement with 5G leader T-Mobile. The alliance will see Mobi leveraging T-Mobile’s nationwide 5G network, promising an enhanced customer experience across Hawaiʻi and the mainland United States.
Ericsson and Telia collaborate to establish the first-ever enterprise 5G private network in the Baltic region, a move set to spur the area’s digital transformation. This development in Estonia will enhance business operations, drive innovation, and streamline the introduction of new products. The partnership aims to showcase the vast potential and benefits of 5G technology in improving business operations and accelerating the adoption of Industry 4.0.
Small Cells World Summit takes place this month with strong focus on generating value and the sustainability of networks. Registrations are open for SCWS 2023, taking place in London on 23 – 24 May

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top