5G Network Slicing: Deutsche Telekom and Ericsson’s Secure Private Cloud Solution

Deutsche Telekom and Ericsson have developed a secure 5G network slicing that directly connects to a private cloud, addressing enterprise concerns over adopting edge use cases. The proof-of-concept has significant implications for the future of 5G technology, particularly around network slicing, with the potential to provide premium, revenue-generating services. However, security concerns persist, highlighting the need for careful management of network slices.
5G NETWORK SLICING: DEUTSCHE TELEKOM AND ERICSSONโ€™S SECURE PRIVATE CLOUD SOLUTION
Image Credit: DEUTSCHE TELEKOM

Deutsche Telekom, the leading German telecom company, and Ericsson, its supplier partner, have announced that they have developed a secure 5G network slicing that can directly link to a private cloud. This development aims to address the concerns of enterprises about implementing edge use cases supported by emerging 5G technology norms.


Network slicing is considered a crucial feature of a 5G SA deployment, enabling the operator to set up discrete virtual networks that function as independent networks, thus facilitating premium, revenue-earning services.

The proof-of-concept (PoC), named after the project, was executed on a 5G standalone (SA) testbed in Deutsche Telekom’s lab with an enterprise smartphone connected to a predetermined set of private cloud applications. Ericsson supplied the 5G core, the radio access network (RAN), and the complete orchestration.

The trial incorporated mobile device management (MDM) and user equipment route selection policy (URSP) to evaluate and validate an application-level device configuration. It also employed TM Forum-based APIs to assimilate third-party management interfaces that enable external management systems to integrate slice ordering and management.

The organizations confirmed that the validated service offers a unified management interface for “automated configuration, provisioning, and complete orchestration of the enterprise slicing service order” and “can be activated without the user requiring any additional setup on their enterprise devices.”

The companies stated, “Enterprise staff can subsequently access private cloud-based applications on their enterprise smartphone device via a secure network slice over the public network.” They further added, “The enterprise administrator can also utilize a range of analytics services in the integrated solution to monitor and analyze the use of the customized network slice.”

This latest PoC is based on prior collaborations between Deutsche Telekom and Ericsson, including a trial in mid-2021 that utilized Ericssonโ€™s 5G SA core and a Samsung smartphone to support a mobile gaming service.

The financial advantages of network slicing have long been emphasized by analyst firms, especially in the context of penetrating various market sectors.

ABI Research predicted as early as 2018 that 5G network slicing would generate “$66 billion in value for enterprise verticals including manufacturing, logistics, and transportation by 2026.” The research firm also recently highlighted that operators need to focus on 5G slice-as-a-service and other ‘value-added services’ crucial for monetization.

Abdul Rahman, associate VP at Deloitte, explained in a presentation at the last year’s RSA Conference that potential vulnerabilities exist, allowing attackers to exploit one network slice and potentially breaching a device operating in an adjacent network slice. These concerns have grown with the recent trend to open up network APIs further, enabling operators to monetize their 5G network investments better.

Rahman further explained the importance of identifying the location of an organizationโ€™s most valuable assets, termed “crown jewels,” within network slices. He emphasized that it’s crucial to know which hosts are in proximity to where these “crown jewels” are situated.


Recent Content

Network APIs are redefining the telecom sector, enabling real-time services, secure mobile payments, IoT support, and cross-industry innovation. With projected market growth to $30B by 2030, telecom leaders are focusing on standardization, ecosystem collaboration, and developer engagement to unlock the full value of APIs in the 5G era.
ย Virgin Media O2 and Daisy Group have joined forces to form a ยฃ1.4B B2B telecom and IT services powerhouse, targeting UK enterprises with an integrated offering that includes private 5G, cloud, AI, and cybersecurity solutions. With Virgin Media O2 holding a 70% stake and Daisy 30%, the new entity aims to accelerate enterprise digital transformation, drive operational synergies, and compete against both traditional telcos and cloud-first players in a fast-evolving market.
Indoor 5G enables high-speed, low-latency connectivity in enclosed environments like offices, hospitals, and airports, supporting mission-critical applications and smart building operations. The market is driven by technological advancements in small cells, distributed antenna systems, and a mix of mmWave and Sub-6 GHz bands. Asia-Pacific leads in adoption due to smart city initiatives and government support. Picocells and antennas are key components, with growing demand in emerging economies fueled by subsidies and infrastructure upgrades. Recent developments include partnerships and acquisitions aimed at strengthening indoor 5G capabilities.
Twelve major European telecom providers, including Vodafone and Deutsche Telekom, have jointly urged the EU to allocate the full upper 6GHz band (6.425โ€“7.125 GHz) for mobile use, citing the spectrumโ€™s critical role in future 6G deployment. With the U.S. and China already advancing in this area, operators warn that delays could jeopardize Europeโ€™s digital leadership and hinder next-generation connectivity infrastructure.
Dirty data in data centers undermines everything from AI accuracy to energy efficiency. With poor metadata, data drift, and dark data hoarding driving up costs and emissions, organizations must adopt DataOps, metadata tools, and a strong data culture to reverse the trend. Learn how clean data fuels smarter automation, compliance, and sustainability.
The telecom industry in 2025 is undergoing a major transformation, driven by artificial intelligence (AI), cloud growth, next-gen cellular networks, and national data sovereignty. AI is reshaping cellular infrastructure, enhancing spectrum efficiency through innovations like ELAA (Extremely Large Aperture Arrays), and enabling smarter, adaptive networks.
Whitepaper
Explore how Generative AI is transforming telecom infrastructure by solving critical industry challenges like massive data management, network optimization, and personalized customer experiences. This whitepaper offers in-depth insights into AI and Gen AI's role in boosting operational efficiency while ensuring security and regulatory compliance. Telecom operators can harness these AI-driven...
Supermicro and Nvidia Logo
Whitepaper
The whitepaper, "How Is Generative AI Optimizing Operational Efficiency and Assurance," provides an in-depth exploration of how Generative AI is transforming the telecom industry. It highlights how AI-driven solutions enhance customer support, optimize network performance, and drive personalized marketing strategies. Additionally, the whitepaper addresses the challenges of integrating AI into...
RADCOM Logo
Article & Insights
Non-terrestrial networks (NTNs) have evolved from experimental satellite systems to integral components of global connectivity. The transition from geostationary satellites to low Earth orbit constellations has significantly enhanced mobile broadband services. With the adoption of 3GPP standards, NTNs now seamlessly integrate with terrestrial networks, providing expanded coverage and new opportunities,...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top