Private Network Check Readiness - TeckNexus Solutions

The Future Inside: Advancements and Opportunities in Indoor 5G

Indoor 5G enables high-speed, low-latency connectivity in enclosed environments like offices, hospitals, and airports, supporting mission-critical applications and smart building operations. The market is driven by technological advancements in small cells, distributed antenna systems, and a mix of mmWave and Sub-6 GHz bands. Asia-Pacific leads in adoption due to smart city initiatives and government support. Picocells and antennas are key components, with growing demand in emerging economies fueled by subsidies and infrastructure upgrades. Recent developments include partnerships and acquisitions aimed at strengthening indoor 5G capabilities.
The Future Inside: Advancements and Opportunities in Indoor 5G

Indoor 5G refers to the deployment of high-speed, low-latency 5G networks inside buildings and enclosed environments such as hotels, airports, offices, hospitals, shopping malls, and factories. With businesses and consumers demanding faster, more reliable, and secure connectivity, indoor 5G is becoming essential for smart buildings and next-generation digital services. It enables uninterrupted communication, enhanced automation, and advanced AI-powered operations, making it a game-changer across multiple industries.


Supporting mission-critical applications is a primary factor driving the indoor 5G. Applications that include emergency response coordination, real-time healthcare monitoring, industrial automation, and security surveillance rely on ultra-reliable, low-latency connectivity that legacy networks do not always provide indoors. Indoor 5G gives the ability to maintain high-quality wireless communications without interruptions in locations where time-sensitive decision-making and continuous data streaming are critical. As government entities and organizations continue to rely on these mission-critical applications, the demand for robust indoor 5G infrastructure continues to increase, which enables organizations to maintain safety, operational efficiencies, and resilience, in high-stakes environments.

Various technological advancements that offer improved performance and scalability influence the indoor 5G. These improvements in small cell technology, such as beamforming and multi-user MIMO support, are increasing the signal strength and user capacity in dense indoor spaces such as offices, shopping malls, airports, hospitals, etc. Furthermore, small cells are low-power, compact nodes that deliver fast 5G coverage where macro networks have difficulty penetrating. Also, mmWave (millimeter wave) and Sub-6 GHz frequency bands are interestingly combined in the networks to strike a balance between speed (with mmWave) and reliable coverage (with Sub-6 GHz) for greater versatility in different building types and use cases.

Asia-Pacific is set to emerge as the fastest-growing and largest Industry for indoor 5G solutions in the coming years.

The indoor 5G is currently dominated by the Asia-Pacific region, which is fueled by rapid urbanization, governments investing heavily in smart city projects, and various government initiatives urging the adoption of the next generation of connectivity infrastructure. Some of the early adopters of 5G technology such as China, South Korea, and Japan are focusing specifically on high-density indoor area. The evolution of China’s 5G network is progressing at a quick pace. Nonetheless, the indoor coverage in crucial locations, including transportation hubs, big stadiums, main commercial zones, and office buildings is still not meeting user expectations. By being open to new techniques such as 3CC CA, China Unicom Beijing currently offers a 300-MHz bandwidth during congestion indoor service and a heavy-load scenario at the Beijing Workers’ Stadium and Bird’s Nest.

Antennas are likely to see the fastest growth among distributed antenna system components during the forecast period.

Antennas are a vital component of indoor 5G deployments, as they provide effective signal distribution, better coverage, and enhanced network performance within enclosed environments. The antennas in the indoor area receive the signal from the carrier and disseminate that signal in the areas of usage. The critical part of deploying the indoor 5G is the antenna placements themselves, as the performance of an indoor 5G solution depends on it. Antenna placements are decided upon through coverage and capacity requirements, along with network topology and any building construction.

The picocell segment is expected to lead growth among small cell technologies in the coming years. Picocells are small cellular base stations optimized for providing targeted 5G coverage in indoor environments with a medium user density such as office buildings, hospitals, retail stores, and campuses. Picocells typically cover an area approaching or less than 200 meters and provide an enhanced, more stable signal in indoor space compared to macro cells, particularly when building materials affect coverage penetration. A single picocell can support between 30 to 100 individual users and has medium power levels for transmission between 250 milliwatts to 2 watts. Picocells rely on a wired or fiber backhaul connection to connect to the wider network infrastructure. These cells are typically deployed in high-volume or high-traffic indoor environments, where one coverage area will have multiple picocells.

Government subsidies and emerging economies create a significant opportunity for the indoor 5G market. As developing countries continue to improve their digital infrastructure and smart city initiatives, we are seeing the demand for robust indoor connectivity in public buildings, transit centers, hospitals, and schools increasing. Countries in Asia, the Middle East, Latin America, and Africa are publicly subsidizing, incentivizing, and supporting policies to get 5G deployed as quickly as possible, especially in last-mile or dense urban areas. These policies make indoor 5G infrastructure projects, including last-mile indoor, government-funded projects, easier to complete and act as catalysts for public and private-sector investment in indoor 5G infrastructure. In May 2020, the Hong Kong government adopted the “Subsidy Scheme for Encouraging Early Deployment of 5G” as part of its Anti-epidemic Fund as a way to speed 5G deployments, including indoor applications, among businesses and organizations.

Recent Developments Shaping the Future of Indoor 5G

  • In April 2025, Nokia and Bharti Airtel are expanding their partnership to enhance Airtel’s 4G/5G network experience in India. Nokia will deploy its Packet Core and Fixed Wireless Access solutions, enabling seamless integration of 5G and 4G technologies, and providing additional capacity for home broadband and enterprise services. This collaboration aims to improve network quality, reduce operational costs through automation and GenAI, and support Airtel’s transition to 5G standalone architecture.
  • In April 2025, Airspan Networks Holdings LLC completed its acquisition of Corning Incorporated’s wireless business. The deal gives Airspan full ownership of Corning’s 6000 and 6200 distributed antenna systems (DAS) and SpiderCloud 4G and 5G small cell RAN portfolio. This acquisition strengthens Airspan’s position in indoor connectivity by offering a more comprehensive wireless solutions portfolio.

Recent Content

Lumen surpassing 1,000 customers on its Network-as-a-Service platform is a clear marker for where enterprise networking is headed. AI adoption, multi-cloud architectures, and distributed applications are pushing organizations toward on-demand, software-driven connectivity. Lumens platform bundles three core service types under a single digital experience. The platform integrates with major hyperscalers, enabling direct paths to AWS, Microsoft Azure, and Google Cloud. All can be provisioned self-service, scaled up or down based on demand, and stitched to cloud regions and third-party data centers via cloud on-ramps.
Vietnam is entering the hyperscale AI data center map, with VNPT and LG CNS positioning to meet local and regional demand. For telecom operators and enterprises, now is the time to align AI roadmaps with data center strategy: plan for high-density racks and liquid cooling, secure GPU capacity, engineer diverse connectivity, and build energy resilience. As the regions AI infrastructure forms, those who co-design workload placement, interconnect, and power from the outset will gain durable cost and performance advantages.
The Cellular Operators Association of India (COAI), representing Reliance Jio, Bharti Airtel, and Vodafone Idea, is pushing back against direct 5G spectrum allocation for enterprises. COAI argues that India’s urban coverage, revenue priorities, and national security risks make an operator-led model via spectrum leasing or network slicing, more viable. The Department of Telecommunications is reviewing TRAI’s recommendation, with the decision set to shape India’s private 5G market for years.
Rogers’ “Plus It Up” campaign combines upbeat family moments, the hit song Too Easy by Canadian indie artist Connor Price, and the promise of 5G+ connectivity. The TV ad emphasizes household savings with multi-line plans, nationwide coverage, and perks like exclusive entertainment access, all while spotlighting homegrown music talent.
Vodacom Group and Airtel Africa have signed a strategic infrastructure sharing agreement in Mozambique, Tanzania, and the DRC. The deal—pending regulatory approval—will enable fiber and tower sharing to accelerate 4G/5G rollout, cut infrastructure costs, and expand coverage in underserved regions, driving Africa’s digital inclusion agenda.
NTT DATA has launched a Global Microsoft Cloud Business Unit to help enterprises worldwide accelerate AI-powered cloud transformation. Backed by 24,000 Microsoft-certified specialists in over 50 countries, the unit focuses on cloud-native modernization, cybersecurity, Agentic AI orchestration, and sovereign cloud adoption. With deep integration into Microsoft’s engineering and sales ecosystem, NTT DATA aims to deliver secure, scalable, and compliant digital transformation at global scale.
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025