Selective Transparency in AI: The Hidden Risks of “Open-Source” Claims

Selective transparency in open-source AI is creating a false sense of openness. Many companies, like Meta, release only partial model details while branding their AI as open-source. This article dives into the risks of such practices, including erosion of trust, ethical lapses, and hindered innovation. Examples like LAION 5B and Meta’s Llama 3 show why true openness — including training data and configuration — is essential for responsible, collaborative AI development.
Selective Transparency in AI: The Hidden Risks of “Open-Source” Claims

Selective Transparency in AI Is Eroding Trust

The term open source has moved from the developer community into mainstream tech marketing. Companies often label their AI models as “open” to signal transparency and build trust. But in reality, many of these releases are only partially open — and that creates a serious risk to the AI ecosystem and public trust. This selective transparency can give the illusion of openness without offering the accountability and collaboration that true open-source AI enables. At a time when public concern about artificial intelligence is rising, and tech regulation remains limited, misleading claims about open-source status could backfire, not just for individual companies but for the industry at large.

What True Open-Source AI Really Means


True open-source AI goes beyond simply releasing model weights or code snippets. It involves sharing the full AI stack, including:

  • Source code
  • Training data
  • Model parameters
  • Training configuration
  • Random number seeds
  • Frameworks used

This kind of openness lets developers, researchers, and organizations inspect, reproduce, and improve the model. It’s a time-tested path to faster innovation, more diverse applications, and increased accountability. We’ve seen this work before. Open-source technologies like Linux, MySQL, and Apache formed the backbone of the internet. The same collaborative principles can benefit AI — especially when developers across industries need access to advanced tools without expensive proprietary barriers.

Why Partial Transparency Isn’t Enough

Let’s look at the example of Meta’s Llama 3.1 405B. While Meta branded it as a frontier-level open-source AI model, they only released the model weights — leaving out key components like training data and full source code. That limits the community’s ability to validate or adapt the model. It also raises ethical concerns, especially when Meta plans to inject AI bots into user experiences without full transparency or vetting.

This kind of selective openness doesn’t just hinder development — it forces users to trust a black box. The risks multiply when such models are used in sensitive applications like healthcare, education, or automated transportation.

Community Scrutiny Matters: The LAION 5B Example

The power of open access isn’t just about faster development. It also enables external auditing — a crucial aspect of ethical AI deployment.

Take the case of the LAION 5B dataset, which is used to train popular image generation models like Stable Diffusion and Midjourney. Because the dataset was public, the community uncovered over 1,000 URLs with verified child sexual abuse material. If the dataset had been closed, like those behind models such as Google’s Gemini or OpenAI’s Sora, this content might have gone unnoticed — and could have made its way into mainstream AI outputs.

Thanks to public scrutiny, the dataset was revised and re-released as RE-LAION 5B, demonstrating how openness supports both innovation and responsible development.

Open Models vs. Truly Open Systems

It’s important to distinguish between open-weight models and truly open-source AI systems.

Open-weight models, like DeepSeek’s R1, offer some value. By sharing model weights and technical documentation, DeepSeek has empowered the community to build on its work, verify performance, and explore use cases. But without full access to datasets, training methods, and fine-tuning processes, it’s not really open source in the traditional sense.

This mislabeling can mislead developers and businesses who rely on full transparency to ensure system integrity and compliance — especially in high-stakes industries like healthcare, defense, and financial services.

Why the Stakes Are Getting Higher

As AI systems become more embedded in everyday life — from driverless cars to robotic surgery assistants — the consequences of failure are growing. In this environment, half-measures won’t cut it.

Unfortunately, the current review and benchmarking systems used to evaluate AI models aren’t keeping up. While researchers like Anka Reuel at Stanford are working on improved benchmarking frameworks, we still lack:

  • Universal metrics for different use cases
  • Methods to handle changing datasets
  • A mathematical language to describe model capabilities

In the absence of these tools, openness becomes even more important. Full transparency allows the community to collectively test, validate, and improve AI systems in real-world settings.

Toward a More Responsible AI Ecosystem

To move forward, the industry needs to embrace true open-source collaboration — not just as a marketing angle, but as a foundation for building safer, more trustworthy AI systems.

That means:

  • Releasing complete systems, not just weights
  • Allowing independent verification and testing
  • Encouraging collaborative improvement
  • Being honest about what’s shared and what’s not

This isn’t just an ethical imperative — it’s also a practical one. A recent IBM study found that organizations using open-source AI tools are seeing better ROI, faster innovation, and stronger long-term outcomes.

The Path Ahead: Openness as Strategy, Not Just Compliance

Without strong self-governance and leadership from the AI industry, trust will continue to erode. Selective transparency creates confusion, hampers collaboration, and raises the risk of serious AI failures — both technical and ethical.

But if tech companies embrace full transparency, they can unlock the collective power of the developer community, create safer AI, and build trust with users.

Choosing true open source is about more than compliance or branding. It’s a long-term strategic choice — one that prioritizes safety, trust, and inclusive progress over short-term advantage.

In a world where AI is shaping everything from smart cities to media and broadcast, the future we create depends on the decisions we make now. Transparency isn’t just good practice. It’s essential.


Recent Content

The pressure to adopt artificial intelligence is intense, yet many enterprises are rushing into deployment without adequate safeguards. This article explores the significant risks of unchecked AI deployment, highlighting examples like the UK Post Office Horizon scandal, Air Canada’s chatbot debacle, and Zillow’s real estate failure to demonstrate the potential for financial, reputational, and societal damage. It examines the pitfalls of bias in training data, the problem of “hallucinations” in generative AI, and the economic and societal costs of AI failures. Emphasizing the importance of human oversight, data quality, explainability, ethical guidelines, and robust security, the article urges organizations to proactively navigate the challenges of AI adoption. It advises against delaying implementation, as competitors are already integrating AI, and advocates for a cautious, informed approach to mitigate risks and maximize the potential for success in the AI era.
A global IBM study reveals 81% of CMOs see AI as critical for growth, yet 54% underestimated the operational complexity. Only 22% have set clear AI usage guidelines, despite 64% now being responsible for profitability. Siloed systems, talent gaps, and lack of collaboration hinder translating AI strategies into results, highlighting a major execution gap as marketing leaders adapt to increased accountability for profit and revenue growth.
Elon Musk’s generative AI firm, xAI, is targeting $4.3 billion in new equity funding, following its previous $6 billion raise and a $5 billion debt effort. The capital will support high-cost AI models like Grok and Aurora, expand massive GPU-powered data centers, and drive xAI’s ambition to compete with leaders like OpenAI and DeepMind. Investors remain interested despite concerns over spending, betting on Musk’s strategy to blend social media and AI under one ecosystem.
The emergence of 6G networks marks a paradigm shift in the way wireless systems are conceived and managed. Unlike its predecessors, 6G will embed Artificial Intelligence (AI) as a native capability across all network layers, enabling real-time adaptability, intelligent orchestration, and autonomous decision-making. This paper explores the symbiosis between AI and 6G, highlighting key applications such as predictive analytics, alarm correlation, and edge-native intelligence. Detailed insights into AI model selection and architecture are provided to bridge the current technical gap. Finally, the cultural and organizational changes required to realize AI-driven 6G networks are discussed. A graphical abstract is suggested to visually summarize the proposed architecture.
As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
ZTE and e& UAE have completed a successful Private 5G Network trial, showcasing high uplink speeds, multi-band adaptability, and ZTE’s NodeEngine Edge Computing platform. This trial enables rapid deployment, stronger enterprise connectivity, and practical use cases for smart industries, aligning with the UAE’s goal of becoming a digital innovation leader.
Whitepaper
Explore RADCOM's whitepaper 'Unleashing the Power of 5G Analytics' to understand how telecom operators can drive cost savings and revenue with 5G. Learn about NWDAF's role in network efficiency, innovative use cases, and analytics monetization strategies. Download now for key insights into optimizing 5G network performance....
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top

Private Network Readiness Assessment

Run your readiness check now — for enterprises, operators, OEMs & SIs planning and delivering Private 5G solutions with confidence.