NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMCโ€™s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integrationโ€”laying the foundation for โ€œAI factoriesโ€ powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout
Image Credit: Nvidia

NVIDIA Builds Domestic AI Infrastructure with TSMC, Foxconn, and Wistron

NVIDIA has officially announced a major expansion of its AI infrastructure footprintโ€”this time on U.S. soil. For the first time in the companyโ€™s history, NVIDIA will manufacture its AI supercomputers and next-generation semiconductors entirely within the United States.


In collaboration with manufacturing giants TSMC, Foxconn, and Wistron, NVIDIA is establishing over one million square feet of dedicated production capacity in Arizona and Texas. This move supports not just chip manufacturing but the entire lifecycle of AI supercomputer developmentโ€”from silicon fabrication and testing to packaging and system integration.

The initiative signals a fundamental shift in the AI supply chain and reflects growing pressure for technological sovereignty, supply chain resilience, and the onshoring of strategic infrastructure.

NVIDIA Blackwell AI Chips Begin Production in Arizona with Full Supercomputer Builds in Texas

NVIDIAโ€™s new Blackwell chipsetsโ€”tailored for AI model training and inferenceโ€”have officially entered production at TSMCโ€™s advanced node facilities in Phoenix, Arizona. These chips are at the heart of NVIDIAโ€™s next-generation computing systems, designed to handle the computational demands of modern large language models (LLMs) and Generative AI.

Down the supply chain, two major supercomputer manufacturing sites are being launched: one in Houston, operated by Foxconn, and another in Dallas, operated by Wistron. These factories will assemble, test, and integrate the full AI computing platforms powered by the Blackwell architecture.

Mass production is expected to scale significantly over the next 12โ€“15 months, with NVIDIA signaling that these plants will play a pivotal role in meeting global demand for AI processing power.

Building a Domestic AI Supply Chainโ€”From Silicon to System Integration

NVIDIA is addressing more than just chip production. The entire value chainโ€”from chip packaging to end-to-end testingโ€”is being localized. The company is partnering with Amkor and SPIL in Arizona for backend manufacturing processes, which are typically outsourced to Asia. These partnerships support the packaging of advanced chipsets and ensure seamless integration into full-stack AI supercomputers.

By 2029, NVIDIA aims to manufacture up to $500 billion worth of AI infrastructure in the U.S., a bold strategy that emphasizes economic impact alongside technical advancement. It also showcases a commitment to national priorities such as supply chain independence, high-tech job creation, and domestic innovation.

NVIDIAโ€™s AI Factories Signal a Shift in Global Tech Infrastructure

NVIDIA describes these new manufacturing sites as โ€œAI factoriesโ€โ€”data center-grade facilities built solely for AI workloads. Unlike traditional compute environments, these factories are optimized for real-time data processing, model training, inference, and advanced analytics.

Tens of such gigawatt-scale AI factories are expected to be built in the coming years to support use cases across sectors like healthcare, financial services, automotive, and telecom.

These facilities will be vital for delivering high-throughput AI capabilities to power applications like digital twins, autonomous systems, virtual assistants, and generative AI tools.

NVIDIA Uses Omniverse and Robotics to Power Smart AI Factories

To streamline operations, NVIDIA plans to use its own technology stack to design and run these factories. Using the NVIDIA Omniverse, the company will build high-fidelity digital twins of its production facilities to simulate workflows, test equipment placement, and optimize throughput before physical deployment.

Additionally, NVIDIA Isaac GR00T, the company’s robotics platform, will automate large portions of the manufacturing process. These smart robots will handle component assembly, automated inspection, and logistics, reducing error margins and increasing productivity across sites.

This integration of AI, robotics, and automation signals a new standard in factory operations, merging digital infrastructure with physical manufacturing in real time.

U.S. AI Manufacturing Expansion Fuels Jobs and Global Tech Leadership

NVIDIAโ€™s U.S.-based production is expected to generate hundreds of thousands of jobs, from factory technicians to software engineers. It also strengthens the U.S. position in the global race to dominate AI, semiconductors, and advanced computing.

According to Jensen Huang, Founder and CEO of NVIDIA, โ€œThe engines of the worldโ€™s AI infrastructure are being built in the United States for the first time. Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain, and boosts our resiliency.โ€

A Strategic Move That Sets the Tone for the AI-First Economy

NVIDIAโ€™s announcement isnโ€™t just about moving manufacturing closer to homeโ€”itโ€™s a signal to the broader tech ecosystem. As AI becomes foundational to everything from drug discovery and cybersecurity to smart cities and self-driving vehicles, companies will need more localized, secure, and scalable AI infrastructure.

By integrating semiconductor manufacturing with edge computing, digital twins, and AI software frameworks under one national footprint, NVIDIA is building a comprehensive blueprint for the AI-powered future.


Recent Content

Samsung Electronics and KT Corporation have entered a strategic partnership to develop 6G network technologies, focusing on improving signal quality and system performance. Their research prioritizes advanced antenna systems like X-MIMO and AI-driven wireless communication enhancements. The companies aim to tackle high-frequency signal loss in the 7 GHz band and improve network reliability through beamforming and multi-spatial transmission.
Indiaโ€™s telecom sector is rapidly evolving with AI and automation enhancing network operations, customer service, and 5G deployment. With over 125 million 5G users and major investments from companies like Reliance Jio and Bharti Airtel, AI technologies are proving essential for scalability and efficiency. Despite challenges like infrastructure integration and talent gaps, Indiaโ€™s growing AI ecosystem and government support are driving the future of smart telecom solutions.
OpenAI and Meta are eyeing partnerships with Reliance Industries to bring AI tools like ChatGPT and Llama to millions in India. By integrating with Relianceโ€™s telecom and digital networks, these tech giants aim to make AI more accessible and affordable. Relianceโ€™s reach, infrastructure, and government ties make it an ideal partner to scale AI adoption across diverse marketsโ€”from cities to rural India.
IMDEA Networks, with partners UC3M, UAM, and UPM, launches DISCO6Gโ€”an ambitious 6G project integrating real-time communication and environmental sensing. Led by Jess Omar Lacruz, the initiative focuses on ISAC systems, intelligent surfaces, AI-driven signal optimization, and non-invasive diagnostics to enhance healthcare, smart mobility, and autonomous systems.
MATRIXX Software introduces dynamic billing support for satellite and non-terrestrial network (NTN) services, enabling telecom operators to expand coverage, monetize emerging LEO partnerships, and unify revenue management. The platform supports flexible commercial models, powering growth in underserved regions and across consumer, enterprise, and wholesale markets.
Microsoft has upgraded its 365 Copilot with AI-driven toolsโ€”Researcher and Analystโ€”designed to handle deep research, strategic analysis, and data insights. Powered by OpenAI models, these features allow users to perform complex tasks like market planning, client reporting, and advanced analytics, while integrating data from platforms like Salesforce and Confluence.

Download Magazine

With Subscription
Whitepaper
Explore the Private Network Edition of 5G Magazine, your guide to the latest in private 5G/LTE and CBRS networks. This edition spotlights 11 award categories including private 5G/LTE leader, neutral host leader, and rising startups. It features insights from industry leaders like Jason Wallin of John Deere and an analysis...
Whitepaper
Discover the potential of mobile networks in modern warfare through our extensive whitepaper. Dive into its strategic significance, understand its security risks, and gain insights on optimizing mobile networks in critical situations. An essential guide for defense planners and cybersecurity enthusiasts....

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top