Private Network Check Readiness - TeckNexus Solutions

IMDEA Networks Leads 6G Evolution with DISCO6G for Real-Time Sensing & Communication

IMDEA Networks, with partners UC3M, UAM, and UPM, launches DISCO6G—an ambitious 6G project integrating real-time communication and environmental sensing. Led by Jess Omar Lacruz, the initiative focuses on ISAC systems, intelligent surfaces, AI-driven signal optimization, and non-invasive diagnostics to enhance healthcare, smart mobility, and autonomous systems.

On March 24, 2025, IMDEA Networks announced its participation in the DISCO6G project, in collaboration with UC3M, UAM, and UPM, and funded by the Madrid Regional Government. This project is set to significantly enhance the capabilities of future mobile networks through the integration of communication and environmental sensing.

Understanding DISCO6G: 6G Networks with Built-In Real-Time Sensing


DISCO6G stands for the integration of Distributed Sensing and COmmunication for 6G networks. The project aims to develop next-generation mobile networks that not only transmit data but also act as real-time, distributed sensors. This dual functionality is essential for applications requiring high reliability and responsiveness such as in transportation and healthcare systems.

Evolving ISAC Systems: Enhancing 6G Environmental Awareness and Timing

The team at IMDEA Networks, led by senior researcher and principal investigator Jess Omar Lacruz, is focusing on the evolution of Integrated Sensing and Communication (ISAC) systems for 6G networks. One of their key initiatives is the development of advanced ISAC architectures. These architectures are designed to enhance environmental awareness in real-time by integrating distributed sensing across multiple network nodes.

In addition to architectural advancements, the team is tackling the challenge of ultra-precise synchronization across large-scale networks. Accurate timing is crucial for the functionality of autonomous vehicles and the reliability of medical diagnostics. IMDEA Networks is creating solutions to minimize timing errors and developing low-power ISAC technologies suitable for various applications, from healthcare devices to smart city infrastructures.

Solving 6G Challenges: Intelligent Surfaces, AI, and High-Frequency Bandwidth

DISCO6G is addressing several technical hurdles to enable the practical deployment of 6G networks. The project targets the need for low-latency and high-precision data collection and transmission, crucial for transport and biomedical applications. One of the technological challenges involves the use of millimeter and submillimeter waves, which, while offering substantial bandwidth, are susceptible to interference.

To optimize the use of these high-frequency bands, IMDEA Networks is developing reconfigurable intelligent surfaces and refining AI algorithms to enhance signal quality. Additionally, the integration of multiple sensors, including LiDAR, radio frequency, and other technologies, is being advanced to enable more precise detection and positioning systems.

6G Biomedical Breakthroughs: Non-Invasive Diagnostics Using RF Sensing

In the field of biomedicine, DISCO6G is pushing the boundaries by developing non-invasive sensing techniques. Traditional diagnostic tests, which are often invasive and time-consuming, can be revolutionized with DISCO6Gs radio frequency-based methods that detect pathogens in real-time without physical contact. This innovation has the potential to significantly speed up and simplify the process of medical diagnostics.

Impact on Various Sectors

The implications of DISCO6G are vast and varied. In transportation, the technology will enable precise train localization, speed estimation, and passenger flow control in railway and metro systems. It will also enhance cooperative detection in vehicular networks, which is pivotal for the safety in autonomous driving.

In the healthcare sector, DISCO6G will facilitate rapid virus detection methods that forego invasive tests and enable automated patient monitoring in smart hospitals. These advancements promise to improve the efficiency of medical services and patient care.

Jess Omar Lacruz of IMDEA Networks sums up the project’s vision, stating that DISCO6G is set to redefine the future of mobile networks by providing connectivity that not only enables communication but also actively perceives and interacts with the environment. This dual capability is expected to significantly enhance the safety, healthcare, and efficiency of future infrastructures, marking a new era in mobile network evolution.


Recent Content

Tesla and Samsung have forged a $16.5B partnership to manufacture AI6 (Hardware 6) chips at Samsung’s Texas fab. Designed as a unified AI hardware platform, these chips will power Tesla’s Full Self-Driving vehicles, Optimus humanoid robots, and AI training clusters. The deal strengthens Tesla’s AI roadmap while positioning Samsung as a key player in high-performance AI silicon and U.S. chip manufacturing.
At the WAIC in Shanghai, China proposed creating a global AI organization to establish shared governance standards and ensure equitable AI access. Premier Li Qiang emphasized balancing innovation with security while signaling Beijing’s ambition to position Shanghai as a global AI hub. The move highlights rising US-China tech tensions and the growing geopolitical weight of AI governance.
The world of wireless connectivity is evolving at an unprecedented pace, with private 5G networks, next-generation 6G innovations, and seamless WiFi-5G integration shaping industries from aviation to maritime logistics.
At Manchester’s UK Space Conference, I discovered space companies drowning in data while ignoring the AI solutions that could save them. Between dodging aggressive panhandlers and debating whether NVIDIA chips belong in orbit, I learned that “Gas Stations in Space” is brilliant marketing, and why most space executives still think like graduate students.
Nokia is shifting its core focus from mobile networks to AI infrastructure and optical networking amid declining RAN revenues and financial pressures. In Q2 2025, the Network Infrastructure division surpassed Mobile Networks, driven by demand from data centers and hyperscalers. With CEO Justin Hotard emphasizing AI integration and enterprise 5G, Nokia is repositioning itself for long-term growth while maintaining its mobile presence as a strategic layer.
Telefónica Tech has partnered with Perplexity to launch Perplexity Enterprise Pro, a secure AI-powered search tool for businesses in Spain. Designed for enterprise use, the platform enables advanced, real-time knowledge discovery, integrates SSO and SOC2 protections, and respects data privacy. Telefónica offers pilots and full professional services to support implementation—targeting productivity boosts in sectors like healthcare, finance, and law.
Whitepaper
Dive deep into how Radisys Corporation is navigating the dynamic landscape of Open RAN and 5G technologies. With their innovative strategies, they are making monumental strides in advancing the deployment and implementation of scalable, flexible, and efficient solutions. Get insights into how they're leveraging small cells, private networks, and strategic...
Whitepaper
This whitepaper explores seven compelling use cases of AI-infused automated service assurance solutions, encompassing anomaly detection, automated root cause analysis, service quality enhancement, customer experience improvement, network capacity planning, network monetization, and self-healing networks. Each use case explains how AI, when embedded in a tailored assurance solution powered by extensive...
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025