Private Network Check Readiness - TeckNexus Solutions

The 5G Journey: Progress, Potential, and the Road Ahead

This article delves into the development of 5G networks, the challenges they face, and the implications for the future of cellular technology.
5G - TeckNexus

​The cellular industry’s 5G network rollout is now several years underway, and while the search for a revolutionary use case that will solidify 5G’s position in cellular technology continues, it is fundamentally achieving its intended purpose—albeit with some caveats.


5G networks generally provide improved and faster service compared to 4G. However, Ookla’s speed test data reveals that 5G networks’ upload and download times generally declined worldwide compared to a year ago. Moreover, even the strongest 5G networks barely reach 1 gigabit per second, falling short of the International Telecommunication Union’s (ITU) ideal download speed of 20 Gbps.

The issues faced by 5G networks mirror those experienced by previous cellular generations. As more customers purchase new devices compatible with these networks, capacity is strained, necessitating network densification. In addition, the lack of millimeter wave network development has also exacerbated 5G’s growing pains.

According to industry analyst Mark Giles, most network operators started their 5G rollouts with non-standalone 5G networks built on top of existing 4G infrastructure. While more cost-effective, this approach has limited deployments, as operators can only build 5G networks where they have existing infrastructure. Additionally, regulatory and permitting challenges have hampered network expansion, particularly in dense urban areas.

In suburban and rural areas, the appeal of 5G is its ability to access new spectrum bands, most notably the millimeter wave band (24 GHz to 40 GHz), which supports lower latencies and greater data rates. However, higher frequencies only travel a little, which is favorable for cities but not for less urbanized areas.

Consequently, network performance is expected to degrade as more people in various locations begin using 5G networks.
Millimeter wave technology has seen limited uptake outside a few countries, including the United States. Companies like Verizon have pivoted to other new bands, such as the C-band (4 to 8 GHz). As of 2022, only 28 operators in 16 countries are deploying millimeter wave technology, according to the Global mobile Suppliers Organization (GSA).

While the ITU’s aspirational 5G download speed of 20 Gbps remains attainable, many countries’ median 5G network experiences still need to meet the organization’s user experience data rate benchmark of 100 Mbps down and 50 Mbps up. Speed test data from Ookla identifies Canada, Italy, Qatar, and the US as countries with improving 5G network performance, though Giles doesn’t believe there is a common factor among them.

For the US, Giles suggests that more availability of new spectrum has helped operators stay ahead of growing congestion on new networks. In contrast, Qatar’s massive investment surrounding the 2022 FIFA World Cup included building robust 5G networks.

It is bit early to determine the impact of 5G’s early challenges on 6G development, but several possible implications exist. First, the industry may devote less time to terahertz wave research due to the lackluster debut of millimeter wave technology and instead consider merging cellular and Wi-Fi technologies for dense coverage areas.

Giles believes the degradation of 5G networks highlights the disconnect between the ambitious vision for these technologies and the reality on the ground. Furthermore, this gap serves as a reminder that achieving the full potential of 5G technology will require overcoming various challenges and adapting to the evolving needs of users and communities.


Recent Content

ZTE and e& UAE have completed a successful Private 5G Network trial, showcasing high uplink speeds, multi-band adaptability, and ZTE’s NodeEngine Edge Computing platform. This trial enables rapid deployment, stronger enterprise connectivity, and practical use cases for smart industries, aligning with the UAE’s goal of becoming a digital innovation leader.
The City of Istres, France, partners with Ericsson, SPIE, and Unitel to deploy a cost-efficient Private 5G Network. This smart city blueprint reduces surveillance camera installation costs by over 80%, improves secure emergency communications, and leverages Edge Computing for AI-ready urban security. Istres sets a precedent for mid-sized European cities modernizing connectivity and resilience.
Spark and Air New Zealand have activated New Zealand’s first Private 5G Network for business operations at Auckland Airport’s logistics warehouse. Using Ericsson’s enterprise-grade 5G, the network powers a drone-robot system that automates stocktakes, keeps staff safer by removing the need for high-shelf manual scanning, and provides real-time inventory data to boost efficiency. This smart warehousing solution sets a new benchmark for airport logistics and supply chain innovation in New Zealand.
Starlink plans to enter India’s broadband market with a $10/month satellite internet service, aiming to reach 10 million users. Backed by SpaceX, the offering challenges local 5G and FWA providers like Jio and Airtel while targeting underserved rural regions. Regulatory hurdles, hardware costs, and network capacity may influence its success.
Deutsche Telekom, Orange, and the Linux Foundation outline their 2025 cloud-native telecom roadmap, highlighting Kubernetes-native workloads, AI integration, observability, and zero-trust security models. Learn how open-source tooling, GitOps automation, and cultural transformation are reshaping next-gen telco operations.
India’s telecom sector is forecasted to grow 12–14% in FY25, hitting ₹3 lakh crore in revenue, with AI adoption, Vodafone-led tariff hikes, and R&D investment driving momentum. AI is not just boosting efficiency—it’s reshaping the future of telecom jobs, infrastructure, and policy. Sunil Bharti Mittal called for stronger private R&D efforts and smarter policy frameworks to harness India’s demographic advantage and scale the next era of AI-powered telecom innovation.
Whitepaper
This 5G network assurance white paper, sponsored by RADCOM covers critical requirements, technologies, and approaches that assurance solutions must support....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025