Private Network Check Readiness - TeckNexus Solutions

The 5G Journey: Progress, Potential, and the Road Ahead

This article delves into the development of 5G networks, the challenges they face, and the implications for the future of cellular technology.
5G - TeckNexus

​The cellular industry’s 5G network rollout is now several years underway, and while the search for a revolutionary use case that will solidify 5G’s position in cellular technology continues, it is fundamentally achieving its intended purpose—albeit with some caveats.


5G networks generally provide improved and faster service compared to 4G. However, Ookla’s speed test data reveals that 5G networks’ upload and download times generally declined worldwide compared to a year ago. Moreover, even the strongest 5G networks barely reach 1 gigabit per second, falling short of the International Telecommunication Union’s (ITU) ideal download speed of 20 Gbps.

The issues faced by 5G networks mirror those experienced by previous cellular generations. As more customers purchase new devices compatible with these networks, capacity is strained, necessitating network densification. In addition, the lack of millimeter wave network development has also exacerbated 5G’s growing pains.

According to industry analyst Mark Giles, most network operators started their 5G rollouts with non-standalone 5G networks built on top of existing 4G infrastructure. While more cost-effective, this approach has limited deployments, as operators can only build 5G networks where they have existing infrastructure. Additionally, regulatory and permitting challenges have hampered network expansion, particularly in dense urban areas.

In suburban and rural areas, the appeal of 5G is its ability to access new spectrum bands, most notably the millimeter wave band (24 GHz to 40 GHz), which supports lower latencies and greater data rates. However, higher frequencies only travel a little, which is favorable for cities but not for less urbanized areas.

Consequently, network performance is expected to degrade as more people in various locations begin using 5G networks.
Millimeter wave technology has seen limited uptake outside a few countries, including the United States. Companies like Verizon have pivoted to other new bands, such as the C-band (4 to 8 GHz). As of 2022, only 28 operators in 16 countries are deploying millimeter wave technology, according to the Global mobile Suppliers Organization (GSA).

While the ITU’s aspirational 5G download speed of 20 Gbps remains attainable, many countries’ median 5G network experiences still need to meet the organization’s user experience data rate benchmark of 100 Mbps down and 50 Mbps up. Speed test data from Ookla identifies Canada, Italy, Qatar, and the US as countries with improving 5G network performance, though Giles doesn’t believe there is a common factor among them.

For the US, Giles suggests that more availability of new spectrum has helped operators stay ahead of growing congestion on new networks. In contrast, Qatar’s massive investment surrounding the 2022 FIFA World Cup included building robust 5G networks.

It is bit early to determine the impact of 5G’s early challenges on 6G development, but several possible implications exist. First, the industry may devote less time to terahertz wave research due to the lackluster debut of millimeter wave technology and instead consider merging cellular and Wi-Fi technologies for dense coverage areas.

Giles believes the degradation of 5G networks highlights the disconnect between the ambitious vision for these technologies and the reality on the ground. Furthermore, this gap serves as a reminder that achieving the full potential of 5G technology will require overcoming various challenges and adapting to the evolving needs of users and communities.


Recent Content

Verizon Business and Nokia will deploy six private 5G networks across Thames Freeport’s major logistics sites, including the Port of Tilbury, London Gateway, and Ford Dagenham to create a high-performance digital infrastructure supporting real-time logistics, AI automation, and edge computing. With plans to generate 5,000 skilled jobs and power sustainable trade, this initiative positions Thames Freeport as a next-gen smart trade corridor.
Hrvatski Telekom’s NextGen 5G Airports project will deploy Private 5G Networks at Zagreb, Zadar, and Pula Airports to boost safety, efficiency, and airport automation. By combining 5G Standalone, Edge Computing, AI, and IoT, the initiative enables drones, smart cameras, and AI tablets to digitize inspections, secure perimeters, and streamline operations, redefining aviation connectivity in Croatia.
Edge AI is reshaping broadband customer experience by powering smart routers, proactive troubleshooting, conversational AI, and personalized Wi-Fi management. Learn how leading ISPs like Comcast and Charter use edge computing to boost reliability, security, and customer satisfaction.
The emergence of 6G networks marks a paradigm shift in the way wireless systems are conceived and managed. Unlike its predecessors, 6G will embed Artificial Intelligence (AI) as a native capability across all network layers, enabling real-time adaptability, intelligent orchestration, and autonomous decision-making. This paper explores the symbiosis between AI and 6G, highlighting key applications such as predictive analytics, alarm correlation, and edge-native intelligence. Detailed insights into AI model selection and architecture are provided to bridge the current technical gap. Finally, the cultural and organizational changes required to realize AI-driven 6G networks are discussed. A graphical abstract is suggested to visually summarize the proposed architecture.
Telecom engineers know OSS systems aren’t broken—they just pretend to work. Outdated data, broken integrations, and overwhelming alerts create false confidence and slow operations. Discover how VC4’s Service2Create delivers real-time, trusted inventory and smarter workflows that engineers can actually rely on.
As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025