NVIDIA Cosmos: Transforming Autonomous Mobility with Physical AI

NVIDIA unveils Cosmos, a platform integrating generative physical AI to advance autonomous mobility and robotics. This platform uses World Foundation Models (WFMs) and advanced data processing to transform human-driven data into scalable, synthetic datasets, enhancing safety, efficiency, and development speed for AVs and industrial systems.
NVIDIA Cosmos: Transforming Autonomous Mobility with Physical AI
Image Credit: Nvidia

At CES 2025 in Las Vegas, NVIDIA made a groundbreaking announcement that promises to reshape the landscape of autonomous mobility and industrial systems. The company introduced NVIDIA Cosmos, a platform integrating generative World Foundation Models (WFMs), advanced tokenizers, guardrails, and a high-speed video processing pipeline designed to accelerate the development of physical AI systems like autonomous vehicles (AVs) and robotics.


This innovation builds upon NVIDIA’s existing “three-computer solution,” a synergistic ecosystem of cutting-edge technologies that includes:

  1. NVIDIA DGX systems for training AI in data centers.
  2. NVIDIA Omniverse on OVX systems for simulation and synthetic data generation.
  3. NVIDIA AGX in-vehicle computers for real-time sensor data processing and safety.

The addition of Cosmos enhances these systems, creating a seamless feedback loop that transforms human-driven data into high-quality, scalable synthetic datasets. This ensures smarter and faster development cycles, improving the performance and safety of autonomous technologies.

What Cosmos Brings to the Table

The Cosmos platform introduces a “data flywheel” that can turn thousands of miles driven by humans into billions of virtually driven miles, significantly amplifying the scale and quality of training data. According to Sanja Fidler, NVIDIA’s Vice President of AI Research, the process leverages 4D reconstruction and AI to create diverse driving scenarios for training and closed-loop evaluations.

Norm Marks, NVIDIA’s Vice President of Automotive, emphasized the transformative impact of Cosmos on physical AI development. Traditionally, creating such systems has been resource-intensive, requiring extensive real-world data collection and curation. Cosmos simplifies this by using generative AI to streamline dataset preparation, enabling faster and more precise development of AI models for AVs and robotics.

Real-World Applications and Adoption

NVIDIA’s Cosmos platform is already gaining traction among transportation industry leaders. Notable early adopters include:

  • Waabi, which uses Cosmos for searching and curating video data to accelerate AV software development and simulation.
  • Wayve, which is leveraging Cosmos to identify rare edge and corner-case driving scenarios critical for safety and validation.
  • Foretellix, an AV toolchain provider, which is utilizing Cosmos alongside NVIDIA Omniverse Sensor RTX APIs to scale high-fidelity testing scenarios.

Additionally, ridesharing giant Uber has partnered with NVIDIA to enhance autonomous mobility. Uber’s extensive driving datasets, combined with Cosmos and NVIDIA DGX Cloud capabilities, will enable the development of robust and efficient AI models.

From Digital Twins to Physical AI

The Cosmos platform aligns perfectly with NVIDIA’s vision of integrating physical AI into various industries. This includes not only autonomous transportation but also factory automation, smart city infrastructure, and even surgical environments. By harnessing WFMs capable of understanding the three-dimensional world, NVIDIA bridges the gap between digital and physical realms.

Rev Lebaredian, NVIDIA’s Vice President of Omniverse and Simulation Technology, underscored the shift from traditional AI models to “physical AI.” Unlike language models, which are one-dimensional, or image-generation models, which are two-dimensional, physical AI demands systems that comprehend and interact with a 3D world. The Cosmos platform, together with NVIDIA’s Omniverse, enables the creation of digital twins — virtual replicas of physical systems that improve continuously through real-world sensor feedback.

The Future of Physical AI

NVIDIA’s CEO, Jensen Huang, highlighted the transformative potential of Cosmos and physical AI in his keynote at CES. He described the evolution from traditional AI to agentic AI and humanoid robots, which can interpret and act within the physical world. With investments in this next wave of innovation, NVIDIA aims to enable the proliferation of billions of physical and virtual robots, unlocking unprecedented possibilities in industries ranging from logistics to healthcare.

“The world is about to change dramatically,” Huang said. “Soon we’ll have billions of physical and virtual robots powered by AI.”

Availability and Accessibility

Cosmos WFMs are currently available under an open model license through Hugging Face and the NVIDIA NGC catalog, with plans to release optimized microservices as NVIDIA NIM. These models are set to empower developers across the globe, democratizing access to state-of-the-art tools for autonomous mobility and beyond.

Conclusion

NVIDIA’s Cosmos platform marks a pivotal moment in the journey toward fully autonomous systems and advanced physical AI. By combining the power of generative AI with its robust three-computer solution, NVIDIA is accelerating the development of safer, smarter, and more efficient technologies. As adoption grows, Cosmos is poised to become the backbone of innovation in autonomous vehicles, robotics, and industrial automation, ushering in a new era of AI-driven transformation.


Recent Content

In Technology Game Changers, leaders from Agility Robotics, Lenovo, Databricks, Mistral AI, and Maven Clinic showcase how AI and robotics are moving from novelty to necessity. From Peggy Johnson’s Digit transforming warehouse labor, to Lenovo’s hybrid AI ecosystem, Databricks’ frictionless AI UIs, Mistral’s sovereignty-focused open-source models, and Maven’s virtual women’s health platform, this article explores the intelligent, personalized, and responsible future of tech. The next frontier of innovation isn’t just smart—it’s human-centered.
Global Shifts explores how leaders like Keyu Jin and Gregory Allen are analyzing the breakdown of old globalization models and the rise of new strategic paradigms. Jin outlines the emergence of regional economic blocs, China’s shift toward technology self-reliance, and the decentralization of capital. Allen frames AI as a strategic battleground, discussing export controls, the rise of DeepSeek, and the risks of decoupling. The piece offers a critical look at how economic power and innovation are evolving in an era defined by urgency, sovereignty, and competition.
In Technology, Climate Change and Justice, top leaders from Arm, The B Team, Vattenfall, and Silo AI outline how technology can both fuel and fix the climate crisis. From Leah Seligmann’s values-driven climate leadership to Anna Borg’s clean-energy grids and Peter Sarlin’s push for efficient, open-source AI, this piece highlights how innovation must align with inclusion, sustainability, and resilience. The message is clear: solving climate change isn’t just about new tech—it’s about how we deploy it, who benefits, and whether it truly serves a livable future.
In Innovation In Action, executives from Time, Sierra, and Axios share how they’re redefining business, media, and journalism with AI. Time is unlocking over a century of content for fair AI use, while Sierra’s “agentic AI” elevates the customer experience across industries. Axios emphasizes human-first reporting with AI support. Across the board, these leaders show how strategic adaptation can embrace AI without compromising trust, transparency, or editorial integrity.
The future of manufacturing is intelligent, autonomous, and sustainable. Powered by private 5G networks, AI, and digital twins, smart factories are revolutionizing how goods are produced and maintained. From predictive maintenance to immersive virtual twins and AI-optimized energy systems, smart manufacturing is unlocking new levels of efficiency and innovation across industries—from ports and shipyards to agriculture and healthcare.
Smart mobility is reshaping how the world moves, powered by 5G, AI, and edge computing. From autonomous vehicles and real-time logistics to AI-driven drones and connected public transport, intelligent transportation systems are redefining urban mobility, logistics, and industrial automation. As global investment and collaboration grow, the transportation industry is transforming into a $11.1 trillion smart ecosystem focused on sustainability, efficiency, and connectivity.

Download Magazine

With Subscription
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Subscribe To Our Newsletter

Scroll to Top