Nokia and Bosch set a new bar for 5G positioning and look ahead to 6G

Nokia and Bosch today announced that they have jointly developed 5G-based precision positioning technology intended for new Industry 4.0 use cases. The two have deployed the proof of concept in a Bosch production plant in Germany, where extensive tests under realistic manufacturing conditions have shown an accuracy within 50 cm in 90 percent of the factory footprint.

Nokia and Bosch announced that they have jointly developed 5G-based precision positioning technology intended for new Industry 4.0 use cases. The two have deployed the proof of concept in a Bosch production plant in Germany, where extensive tests under realistic manufacturing conditions have shown an accuracy within 50 cm in 90 percent of the factory footprint.


The positioning technology tracks mobile and portable devices connected to the 5G network, accurately determining their positions where no global navigation satellite service coverage is available, for instance, in factories, warehouses, or underground facilities. As part of the factory test, an enhanced private 5G network was able to determine the precise position of assets such as automated guided vehicles (AGVs), mobile robots, and mobile control panels – tracking their movements throughout the plant in real-time.

Traditionally, 5G positioning works by measuring the time it takes for mobile signals to travel from a mobile device to different base stations and anchor nodes in the network. As signals take longer to reach nodes that are further away, the positioning system can triangulate its source. Nokia and Bosch have built upon that foundation by equipping 5G nodes with multiple receive antennas, which enable the network to detect the incoming angles of signals. Advanced Nokia Bell Labs algorithms interpret this time delay and angle-of-arrival information to determine the most probable position of the mobile device. Their proof-of-concept achieves a level of accuracy well beyond the current cellular position state-of-the-art, providing a sneak peek at what 5G networks, both public and private, will be capable of in the future.

Precision localization is important for many applications in industrial environments, such as robot navigation, asset tracking, and worker safety. Realizing both high-performance connectivity and high-accuracy positioning within a single private network’s infrastructure also has many operational benefits, such as reducing the complexity of IT infrastructure, leading to a lower total cost of ownership (TCO) and higher returns on investments.

Andreas Mueller, Chief Expert and responsible for the 6G activities at Bosch, said: “Knowing where things are is generally very valuable information in manufacturing. While today usually separate systems are used for connecting and locating devices, this may be done via an integrated private 5G solution in the future. The proof-of-concept conducted jointly with Nokia underpins the leading role of Bosch in exploring new opportunities for our customers and developing the Factory of the Future.”

Nokia and Bosch have a long history of collaboration, announcing their first strategic collaboration in 2017 to develop industrial IoT and sensing solutions. Today’s announcement of precise positioning technology is a key milestone, but it is only one of the innovations the two companies are pursuing. Nokia and Bosch have begun conducting joint research in the next generation of networking, investigating how future 6G networks could be used for both communications and sensing when they are commercially available by the end of the decade.

While 5G has the potential to determine the location of devices connected to the network, 6G will have the ability to track the position of any object – whether connected or unconnected. This will allow 6G signals to function similarly to radar, giving users an awareness of their surroundings beyond their traditional senses.

Peter Vetter, President of Bell Labs Core Research at Nokia, said: “Bosch and Nokia Bell Labs foresee a future where networks do far more than communicate. Soon, 5G will track connected devices more precisely than satellites in places satellites can’t reach. In the next decade, 6G will be capable of sensing all objects in their coverage areas regardless of whether they contain active radios. We are creating networks to endow humans with a digital 6th sense.”

Source: Nokia Press Release


Recent Content

Verizon Business and Nokia will deploy six private 5G networks across Thames Freeport’s major logistics sites, including the Port of Tilbury, London Gateway, and Ford Dagenham to create a high-performance digital infrastructure supporting real-time logistics, AI automation, and edge computing. With plans to generate 5,000 skilled jobs and power sustainable trade, this initiative positions Thames Freeport as a next-gen smart trade corridor.
Hrvatski Telekom’s NextGen 5G Airports project will deploy Private 5G Networks at Zagreb, Zadar, and Pula Airports to boost safety, efficiency, and airport automation. By combining 5G Standalone, Edge Computing, AI, and IoT, the initiative enables drones, smart cameras, and AI tablets to digitize inspections, secure perimeters, and streamline operations, redefining aviation connectivity in Croatia.
Edge AI is reshaping broadband customer experience by powering smart routers, proactive troubleshooting, conversational AI, and personalized Wi-Fi management. Learn how leading ISPs like Comcast and Charter use edge computing to boost reliability, security, and customer satisfaction.
The emergence of 6G networks marks a paradigm shift in the way wireless systems are conceived and managed. Unlike its predecessors, 6G will embed Artificial Intelligence (AI) as a native capability across all network layers, enabling real-time adaptability, intelligent orchestration, and autonomous decision-making. This paper explores the symbiosis between AI and 6G, highlighting key applications such as predictive analytics, alarm correlation, and edge-native intelligence. Detailed insights into AI model selection and architecture are provided to bridge the current technical gap. Finally, the cultural and organizational changes required to realize AI-driven 6G networks are discussed. A graphical abstract is suggested to visually summarize the proposed architecture.
Telecom engineers know OSS systems aren’t broken—they just pretend to work. Outdated data, broken integrations, and overwhelming alerts create false confidence and slow operations. Discover how VC4’s Service2Create delivers real-time, trusted inventory and smarter workflows that engineers can actually rely on.
As the telecom world accelerates toward 5G-Advanced and sets its sights on 6G, artificial intelligence (AI) is no longer a peripheral technology — it is becoming the brain of the mobile network. AI-driven Radio Access Networks (RANs), and increasingly AI-native architectures, are reshaping how operators design, optimize, and monetize their networks. From zero-touch automation to intelligent spectrum management and edge AI services, the integration of AI and machine learning (ML) is unlocking both operational efficiencies and new business models.

This article explores the evolution of AI in the RAN, the architectural shifts needed to support it, the critical role of Open RAN, and the most promising AI use cases from the field. For telcos, this is not just a technical upgrade — it is a strategic inflection point.
Whitepaper
Telecom networks are facing unprecedented complexity with 5G, IoT, and cloud services. Traditional service assurance methods are becoming obsolete, making AI-driven, real-time analytics essential for competitive advantage. This independent industry whitepaper explores how DPUs, GPUs, and Generative AI (GenAI) are enabling predictive automation, reducing operational costs, and improving service quality....
Whitepaper
Explore the collaboration between Purdue Research Foundation, Purdue University, Ericsson, and Saab at the Aviation Innovation Hub. Discover how private 5G networks, real-time analytics, and sustainable innovations are shaping the "Airport of the Future" for a smarter, safer, and greener aviation industry....
Article & Insights
This article explores the deployment of 5G NR Transparent Non-Terrestrial Networks (NTNs), detailing the architecture's advantages and challenges. It highlights how this "bent-pipe" NTN approach integrates ground-based gNodeB components with NGSO satellite constellations to expand global connectivity. Key challenges like moving beam management, interference mitigation, and latency are discussed, underscoring...

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top

Private Network Readiness Assessment

Run your readiness check now — for enterprises, operators, OEMs & SIs planning and delivering Private 5G solutions with confidence.