MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite

MediaTek powered a smartphone with a 5G Non-Terrestrial Network (NTN) connection in a lab environment for the first time in collaboration with Rohde & Schwarz. 5G NTN technology will help boost service reliability across the globe by harnessing existing terrestrial networks and economies of scale in the cellular sector, making fast and reliable 5G connectivity much more accessible in unserved and underserved areas.
MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite
MediaTek and Rohde & Schwarz demo 5G smartphone connectivity via satellite

MediaTek reached a new 5G milestone by powering a smartphone with a 5G Non-Terrestrial Network (NTN) connection in a lab environment for the first time. Through a transfer of data to ITRI’s Next Generation NodeB network (gNB) test over a Low Earth Orbit (LEO) satellite channel emulated in collaboration with Rohde & Schwarz, MediaTek has demonstrated a world-first and showcased the capability of supporting satellite communications with commercial 5G smartphone hardware.


This achievement was completed in a MediaTek lab using Rohde & Schwarz test equipment, emulating a realistic LEO satellite constellation at 600km altitude where each satellite is moving extremely fast – nearly 27,000km per hour – in orbit. The smartphone was powered by MediaTek’s NR NTN-enabled test chip connected to the test gNB by ITRI. The test chip was designed to meet the 3GPP Release 17 spectrum-defined functionality to simulate Doppler and timing variation effects by LEO satellite channels.

“This milestone continues MediaTek’s long track record of 5G R&D innovations,” said HC Hwang, General Manager of Wireless Communication System and Partnership at MediaTek. “With this test, MediaTek successfully validated the capability of connecting a 5G smartphone to satellite networks, opening up the door for 5G satellite network development to bring ubiquitous connectivity around the world.”

MediaTek’s demonstration showcases how 5G NTN technology can be used for satellite communications by employing the same form factor and design components as a standard smartphone. 5G NTN technology will help boost service reliability across the globe by harnessing existing terrestrial networks and economies of scale in the cellular sector, making fast and reliable 5G connectivity much more accessible in unserved and underserved areas. In addition to the consumer use cases for expanded 5G access, there are a number of business and enterprise use cases including critical communications, transportation, agriculture, fleet and heavy machine management and Internet of Things (IoT) devices.

Gerald Tietscher, Vice President Signal Generators Product Division at Rohde & Schwarz, said, ”Ubiquitous connectivity is an important societal goal and Rohde & Schwarz is committed to providing test and measurement solutions that will help to bring the latest enabling technologies to the market.”

 

“In this lab testing, ITRI proves that its gNB (CU, DU, and RU) technology can be fully integrated into an NR NTN communication system,” said Dr. Pang-An Ting, General Director of Information and Communications Research Laboratories at ITRI. “As a frontier developer, we see a promising future of 3GPP NTN communication, as it supports wider coverage and seamless connectivity service while integrating with terrestrial networks.”

MediaTek is an active contributor to 3GPP Release 17 standardization work, which may help eliminate the need for traditionally bulky antennae on 5G NTN smartphones. Furthermore, solutions can leverage sophisticated 5G physical layer designs to overcome severe signal fading in time/frequency domains. Sharing the same protocol stack also allows NTN solutions to facilitate switching between cellular and satellite networks using the same device.


Recent Content

Oulu University Hospital has deployed Europe’s first Private 5G Standalone (SA) network, revolutionizing healthcare with real-time patient monitoring, AI-assisted imaging, and augmented reality (AR) for surgery. Built by Boldyn Networks using Nokia Modular Private Wireless (MPW) technology, this high-speed, ultra-reliable network ensures seamless data flow, improved diagnostics, and enhanced patient safety. Learn how 5G is shaping the future of smart hospitals.
5G coverage in the U.S. varies significantly between urban and rural areas. While T-Mobile leads in availability, AT&T leverages FirstNet for rural expansion, and Verizon focuses on C-band spectrum. States like Nevada and Illinois rank high for 5G access, while Wyoming struggles with coverage gaps. With continued investment from major carriers and the FCC’s 5G Fund, rural connectivity is set to improve nationwide. Source: Ookla® (This article is based on Ookla’s research and Speedtest Intelligence® data).
AI is playing a key role in telecom security by strengthening threat detection, fraud prevention, and regulatory compliance. As 5G, IoT, and edge computing expand, telecom networks face cyber threats such as AI-specific attacks, network intrusions, and data breaches. AI-powered security solutions provide automated threat response, anomaly detection, and AI lifecycle protection, helping telecom providers maintain a secure and resilient network infrastructure.
AI is transforming the relationship between telcos and hyperscalers like AWS, Google Cloud, and Microsoft Azure. With AI-driven automation, cloud-native networks, and edge computing, telecom operators are optimizing efficiency, reducing costs, and unlocking new revenue streams. As AI-powered innovations reshape 5G, cybersecurity, and digital services, these strategic partnerships are set to redefine the future of telecom.
EE has deployed the UK’s first 5G Standalone (SA) network at Wembley Stadium, setting a new benchmark for sports venue connectivity. This upgrade delivers faster speeds, ultra-low latency, and enhanced capacity, ensuring seamless live streaming, mobile transactions, and digital fan experiences. As part of EE’s nationwide 5G expansion, this deployment paves the way for smart stadium innovations and next-generation event experiences.
Vodafone Spain is deploying a private 5G network at the Muga Potash Mine in collaboration with Geoalcali. This initiative enhances safety, automation, and operational efficiency in underground mining by enabling real-time data access, remote-controlled machinery, and IoT-powered monitoring. With low-latency connectivity and AI-driven automation, the project sets a new benchmark for smart mining in Spain.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top