6G: The Role of Brain-Inspired Computing by King’s Engineers

6G Technology: The Role of Brain-Inspired Computing by King's Engineers" highlights the groundbreaking research that aims to revolutionize wireless communications. By using neuromorphic computing, the research seeks to provide faster, more energy-efficient, and AI-integrated 6G telecommunications, potentially transforming industries such as mobile healthcare, telecommunications, and robotics.
Engineers from King's College Use Brain-Like Computing for Better 6G Technology

Two engineers from King’s College, London, are venturing into a promising research project that focuses on neuromorphic computing, a form of computing inspired by the functioning of the human brain, to enhance wireless technology drastically. This initiative is backed by significant scientific entities – the Engineering and Physical Sciences Research Council (EPSRC) in the UK and the National Science Foundation (NSF) in the United States, indicating the importance and potential of the project.


The fundamental goal of this research is to significantly enhance the speed and energy efficiency of computing and wireless telecommunications. By achieving these improvements, there will be a major positive impact across various industries, especially mobile healthcare, telecommunications, and robotics. The approach taken here emphasizes a higher level of artificial intelligence (AI) integration into wireless communications, offering a vast array of possibilities in service improvements and user experience enhancements.

The primary team leading this initiative consists of an international collaboration of high-profile academics. Professor Osvaldo Simeone and Dr. Bipin Rajendran from the Department of Engineering at King’s College are working in conjunction with Professor Vincent Poor from Princeton University. They are focusing on how neuromorphic computing can be effectively leveraged for the more efficient delivery of information across telecommunications networks. This could potentially underpin the development of revolutionary services and applications in the upcoming 6G networks.

As highlighted by Professor Simeone, the recent widespread implementation of 5G has already marked a significant transition in telecommunications systems. The global system is evolving to facilitate the transfer of intelligence between machines better. Despite this progress, Simeone pointed out that current systems still encounter limitations. In particular, conventional communication systems are built on a framework of transmitting and storing information in ‘bits,’ which restricts their ability to adapt to new situations or optimize their resource consumption based on the specific nature of the information being exchanged.

Dr. Rajendran further explained the characteristics of neuromorphic systems. These systems are engineered to mimic the behavior of neural networks found in the human brain. One of the key techniques used in this approach involves Spiking Neural Networks (SNNs) that transmit information through the generation of ‘spikes.’ This operational model allows for highly efficient, event-driven computations as it processes data only when necessary.

The team believes that neuromorphic computing has several distinct advantages that make it superior to traditional computing. Unlike conventional computers, these neuromorphic systems are designed to learn and adapt in real time. Additionally, they are noted for their exceptional energy efficiency. When these factors are combined, they present a compelling case for the incorporation of neuromorphic computing within telecommunications. The introduction of this technology in mobile devices could lead to the provision of sophisticated AI tools, better services, and a much more customized experience based on user requirements.

To push this frontier technology forward, Professor Simeone and Dr. Rajendran have engaged in collaborative efforts with renowned industrial partners, including Intel Labs, NVIDIA, and AccelerComm. With the collective knowledge and experience of these industrial leaders, the King’s researchers aim to explore the core principles, algorithms, and design techniques involved in the creation of neuromorphic communications, pushing the boundaries of what’s currently achievable in telecommunications technology.


Recent Content

ETSI has published its first ISAC report for 6G—ETSI GR ISC 001—highlighting 18 use cases across healthcare, public safety, automation, and mobility. The report dives into deployment scenarios, sensing modalities, and KPIs like fine motion accuracy and sensing latency. It also outlines security, privacy, and sustainability guidelines for real-world ISAC integration into 6G networks.
In 2025, 5G surpasses 2.25 billion global connections, marking a pivotal shift toward mainstream adoption. While North America leads in performance and per capita usage, challenges in spectrum policy and enterprise integration remain. This in-depth report from 5G Americas explores the rise of Standalone 5G, the promise of 5G-Advanced, the reality of private network deployments, and the need for smart, forward-looking spectrum strategy.
AI is transforming the gaming industry, and Sierra ANN is leading the charge. With failure rates historically as high as 75%, game development has long relied on costly, trial-and-error processes. Now, AI is optimizing every stage—from graphics and animations to math balancing, audio, and QA. Sierra ANN’s AI-powered suite promises to double success rates and cut production costs in half, making game development faster, smarter, and more profitable.
SuperAI Singapore 2025 will bring together over 7,000 global leaders in AI, robotics, healthcare, finance, and climate tech at Marina Bay Sands on June 18–19. With three stages, a hackathon, and a $200K startup competition, the event unites Eastern and Western AI ecosystems to spotlight frontier breakthroughs. Speakers include Emad Mostaque, Balaji Srinivasan, and Sharon Zhou, with more than 150 tech visionaries expected to appear.
Confidencial.io will unveil its unified AI data governance platform at RSAC 2025. Designed to secure unstructured data in AI workflows, the system applies object-level Zero Trust encryption and seamless compliance with NIST/ISO frameworks. It protects AI pipelines and agentic systems from sensitive data leakage while supporting safe, large-scale innovation.
Qubrid AI unveils Version 3 of its AI GPU Cloud, featuring smarter model tuning, auto-stop deployment, and enhanced RAG UI—all designed to streamline AI workflows. The company also teased its upcoming Agentic Workbench, a new toolkit to simplify building autonomous AI agents. Along with App Studio and data provider integration, Qubrid is positioning itself as the go-to enterprise AI platform for 2025.
Whitepaper
5G network rollouts are now sprouting around the globe as operators get to grips with the potential of new enterprise applications. Yet behind the scenes, several factors still could strongly impact just how transformative this technology will be in years to come. Ultimately, it will all boil down to one...
NetInsight Logo
Whitepaper
System integrators play a crucial role in the network ecosystem by bringing together various components and technologies from the diverse network ecosystem players to build, deploy, and operate comprehensive end-to-end solutions that meet the specific needs of their clients....
Tech Mahindra Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top