Private Network Check Readiness - TeckNexus Solutions

SK Telecom and VAST Data Optimize Korea’s Sovereign AI Infrastructure based on NVIDIA Supercomputers

SK Telecom is partnering with VAST Data to power the Petasus AI Cloud, a sovereign GPUaaS built on NVIDIA accelerated computing and Supermicro systems, designed to support both training and inference at scale for government, research, and enterprise users in South Korea. By placing VAST Data's AI Operating System at the heart of Petasus, SKT is unifying data and compute services into a single control plane, turning legacy bare-metal workflows that took days or weeks into virtualized environments that can be provisioned in minutes and operated with carrier-grade resilience.
SK Telecom and VAST Data Optimize Korea’s Sovereign AI Infrastructure
Image Credit: VAST

Why SK Telecom and VAST Data Matter for Sovereign AI in Korea

This collaboration establishes a national-scale GPU-as-a-Service platform that aligns telco infrastructure with sovereign AI requirements, accelerating time-to-model while keeping data and control in-country.

Partnership Overview: Petasus GPUaaS for Korea


SK Telecom is partnering with VAST Data to power the Petasus AI Cloud, a sovereign GPUaaS built on NVIDIA accelerated computing and Supermicro systems, designed to support both training and inference at scale for government, research, and enterprise users in South Korea.

The rollout centers on the Haein Cluster, selected for Korea’s AI Computing Resource Utilization Enhancement program, signaling policy-level support for elastic, in-country access to advanced GPUs and shared AI infrastructure.

By placing VAST Data’s AI Operating System at the heart of Petasus, SKT is unifying data and compute services into a single control plane, turning legacy bare-metal workflows that took days or weeks into virtualized environments that can be provisioned in minutes and operated with carrier-grade resilience.

Why Now: Speed, Sovereignty, and GPU Supply Constraints

Demand for foundation models and enterprise-grade inference is outpacing on-prem capacity, while regulatory and competitive pressures make data residency, governance, and cost control non-negotiable.

Telecom operators are uniquely positioned to deliver sovereign AI utilities because they already run highly available networks and data centers, and the SKTVAST design shows how virtualization can deliver near bare-metal performance without sacrificing isolation or uptime.

Inside Korea’s Haein Cluster and Petasus AI Cloud

The platform integrates modern GPUs, disaggregated storage, and secure multi-tenancy to deliver elastic AI services within national borders.

Architecture: VAST DASE with NVIDIA HGX and Supermicro

The Petasus AI Cloud pairs VAST Data’s disaggregated, shared-everything architecture with NVIDIA HGX-based servers built by Supermicro, creating a high-throughput data and compute fabric designed for parallelism, scale, and resilience.

Next-generation NVIDIA Blackwell GPUs anchor training and inference capacity, while VAST’s AI OS consolidates data services, compute orchestration, and workflow execution into a unified platform capable of servicing multiple tenants without client-side gateways or proprietary shims.

This combination reduces data movement bottlenecks, improves GPU utilization, and provides a consistent data plane for model development, fine-tuning, and production inference.

Virtualization Without Penalty: GPUaaS in Minutes

Where provisioning AI jobs on bare metal can stall projects for weeks, Petasus uses virtualization to stand up GPU environments in roughly ten minutes while preserving performance that closely tracks bare-metal baselines.

VAST’s software automates resource allocation across GPUs, storage, and the associated networking fabrics, carving out dedicated pools per tenant and per workload to match policy, performance, and security requirements.

Secure Multi‑Tenancy and Simplified Lifecycle

The platform enforces workload isolation and data privacy with quality-of-service guarantees, which is essential for mixed government, research, and enterprise tenants sharing national resources.

By providing a single, unified pipeline for training and inference, teams can move models from experimentation to production with fewer data copies and operational touchpoints, improving time-to-value and reducing operational risk.

Carrier-grade uptime and lean operations are baked into the design, aligning with telco reliability expectations and enabling consistent SLAs for AI services.

Business Impact for Telcos and Enterprises

The design offers a blueprint for telcos to monetize AI infrastructure while giving enterprises sovereign, elastic access to state-of-the-art GPUs.

For Telcos: Toward a National AI Utility

Operators can extend beyond connectivity to deliver GPUaaS, data services, and model lifecycle operations, priced as a utility and governed to national standards.

Selection by the Ministry of Science and ICTs GPU rental support program underscores the public-private alignment needed to scale capacity, de-risk capital investment, and ensure equitable access to advanced compute.

By virtualizing GPUs with near-native performance, telcos can drive higher utilization, shorten provisioning cycles, and expand addressable markets across research institutions, startups, and regulated industries.

For Enterprises and Public Sector: Elastic, In‑Country AI

Organizations gain access to modern NVIDIA platforms without navigating supply constraints or building bespoke AI stacks, while keeping data, models, and operations within South Korea’s borders.

Unified data and compute services simplify compliance, reduce data gravity challenges, and streamline MLOps, from pretraining and fine-tuning to real-time inference at scale.

What to Watch Next

Execution details will determine whether this sovereign AI model becomes a repeatable pattern for other markets and operators.

Performance and Operational KPIs

Track GPU utilization rates, time-to-provision, job queue times, training throughput, inference latency, and SLA adherence, along with failure domain containment and recovery times tied to carrier-grade targets.

Ecosystem Integration and Developer Experience

Watch how quickly the platform exposes frictionless, multi-protocol access for data scientists and MLOps teams, and how it integrates with common AI frameworks, data pipelines, and enterprise security controls.

Capacity Scaling and Cost Efficiency

Monitor cadence of NVIDIA Blackwell capacity adds, power, and cooling efficiency, and the impact of disaggregation on TCO, including the balance between virtualization flexibility and performance for large training runs.

Leadership Takeaways

Technology leaders should use this deployment as a template for building a compliant, elastic AI infrastructure that balances speed, control, and cost.

Design for Sovereignty and Speed

Define data residency, access control, and audit requirements up front, and pair them with a provisioning target measured in minutes, not weeks, to keep model development cycles on track.

Adopt a Unified Data and Compute Plane

Consolidate training and inference pipelines on a shared, high-throughput fabric to cut data copies, improve GPU utilization, and simplify operations across tenants.

Prioritize Isolation with Carrier‑Grade Reliability

Engineer for strict workload separation, predictable performance, and automated recovery, treating AI services with the same rigor as critical network functions.

Align Funding and Ecosystem Partnerships

Leverage public programs, hardware partners such as Supermicro, and GPU roadmaps from NVIDIA to secure capacity, manage TCO, and accelerate time-to-service for national AI initiatives.

Pilot, Measure, and Iterate

Start with high-impact workloads, instrument end-to-end KPIs, and use data to refine resource allocation, scheduling, and cost models as adoption scales across research, government, and enterprise tenants.


Recent Content

TeckNexus is proud to announce the winners of the 2024 Private Networks Awards, celebrating outstanding achievements in private 5G, LTE, and CBRS innovations. This prestigious program honors companies, solutions, and collaborations that have transformed connectivity and redefined industry standards in sectors such as manufacturing, healthcare, smart cities, and public safety. The winners showcase how advanced private networks and strategic partnerships address complex challenges, drive innovation, and promote sustainable growth.

Award Category: Excellence in Private 5G/LTE Networks

Winner: Nokia


Nokia has been recognized with the TeckNexus 2024 Award for “Excellence in Private 5G/LTE Networks” for its transformative solutions that drive industrial digital transformation. Utilizing advanced technologies such as Nokia Digital Automation Cloud (DAC) and Modular Private Wireless (MPW), Nokia delivers secure, scalable, and high-performance connectivity tailored for Industry 4.0 applications. By addressing complex operational challenges through reliable, low-latency connectivity, AI-driven automation, and robust data security, Nokia empowers enterprises to optimize efficiency, enhance automation, and foster sustainability. With deployments across over 795+ enterprise customers and 1,500 mission-critical networks, Nokia’s innovative private wireless solutions are setting new standards for connectivity, operational excellence, and industrial growth worldwide.

Award Category: Private Network Excellence in Generative AI Integration

Winner: Southern California Edison (SCE) & NVIDIA


Southern California Edison (SCE), in collaboration with NVIDIA, has been honored with the TeckNexus 2024 Award for “Excellence in Private Network AI and Generative AI Integration” for their transformative work in modernizing network operations through advanced AI and predictive analytics. Their initiative, Project Orca, exemplifies the power of AI-driven innovation, enhancing predictive capabilities, operational efficiency, and the reliability of critical infrastructure. This collaboration highlights how SCE and NVIDIA’s AI solutions redefine network operations, elevating performance and setting new standards for AI integration in private networks.

Award Category: Private Network Excellence in Network Assurance

Winner: Anritsu

Partner: SmartViser, Major European Airline


Anritsu has been recognized with the TeckNexus 2024 Award for “Private Network Excellence in Network Assurance” for its outstanding achievements in ensuring private 5G/LTE network performance and reliability. This award highlights Anritsu’s comprehensive approach to network monitoring, business-centric KPIs, and performance analytics within mission-critical environments such as international airports. By leveraging advanced real-time monitoring, automated testing technologies, and collaborative solutions with SmartViser, Anritsu has set a new benchmark for maintaining optimal network efficiency, user satisfaction, and high-performance connectivity in complex private network scenarios.

Award Category: Private Network Excellence in Innovation

Winner: Fiducia Sports AI


Fiducia Sports AI has been recognized with the TeckNexus 2024 Award for “Private Network Excellence in Innovation” for transforming fan engagement in the sports and entertainment industry. By leveraging artificial intelligence (AI), augmented reality (AR), and the power of public and private 5G networks, Fiducia’s innovative platform delivers real-time player stats, immersive AR experiences, and interactive content. This seamless and personalized connection enhances fan interaction with sports events across diverse platforms, redefining the fan experience and transforming how audiences engage with sports content, regardless of their location.

Award Category: Private Network Excellence in Manufacturing

Winner: Ericsson


Ericsson has been recognized with the TeckNexus 2024 Award for “Private Network Excellence in Manufacturing” for its transformative work at the USA 5G Smart Factory in Lewisville, Texas, and global deployments such as the Smart Factory Innovation Centre in Wolverhampton, UK, Atlas Copco Tools, and Toyota Material Handling’s facility in Columbus, Indiana. By integrating private 5G connectivity with advanced Industry 4.0 technologies, Ericsson has set new benchmarks for optimizing manufacturing processes, enhancing supply chain resilience, and elevating operational efficiency. This award underscores Ericsson’s leadership in leveraging private 5G to drive innovation in areas such as remote inspections, predictive maintenance, and sustainable production, redefining modern manufacturing standards through secure and scalable connectivity solutions.

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025