Private Network Check Readiness - TeckNexus Solutions

Qualcomm & Nokia Bell Labs Unveil AI-Powered Wireless Network Interoperability

At MWC 2025, Qualcomm and Nokia Bell Labs demonstrated how AI-driven wireless networks can achieve multi-vendor interoperability without sharing proprietary data. Their AI-enhanced channel state feedback (CSF) technology optimizes 5G performance, improving network efficiency, signal strength, and reliability. With implications for 6G, Open RAN, and private 5G, this breakthrough is reshaping the future of AI-powered wireless communications.
Qualcomm & Nokia Bell Labs Unveil AI-Powered Wireless Network Interoperability

Pushing the Boundaries of AI in Wireless Networks


As 5G and future wireless technologies evolve, the role of artificial intelligence (AI) in optimizing network performance is becoming increasingly crucial. At Mobile World Congress (MWC) 2025, Qualcomm and Nokia Bell Labs showcased how multiple vendors can develop interoperable AI models to enhance wireless network efficiency.

This innovation builds on their MWC 2024 proof-of-concept, where they demonstrated AI-enhanced channel state feedback (CSF), an approach that allows networks to dynamically adapt to changing wireless conditions.

By using sequential learning, Qualcomm and Nokia Bell Labs proved that AI models from different vendors can be co-developed without requiring proprietary data sharing. This multi-vendor AI collaboration has major implications for the future of 5G and the transition to 6G.

AI in Wireless Networks: Enhancing 5G & 6G Performance

How AI-Powered CSF Optimizes Wireless Network Performance

Channel state feedback (CSF) is essential for ensuring optimal data transmission between a base station and a mobile device. Wireless conditions—such as interference, device movement, and obstacles—constantly change, requiring networks to adapt in real time.

Traditional feedback mechanisms rely on pre-defined beamforming techniques, which lack flexibility in handling rapid environmental shifts. AI-enhanced CSF, however, learns from real-world data, allowing the network to:

  • Generate more precise transmission beams for mobile users.
  • Reduce interference by dynamically adjusting signal paths.
  • Enhance throughput, delivering faster and more reliable connectivity.

By leveraging AI-driven feedback models, Qualcomm and Nokia demonstrated that wireless networks can become significantly smarter and more efficient.

Multi-Vendor AI Collaboration: Enabling Secure Network Interoperability

One of the biggest challenges in multi-vendor AI integration is ensuring interoperability without exposing sensitive intellectual property. Qualcomm and Nokia addressed this issue by implementing sequential learning, an AI training approach that enables collaboration while maintaining proprietary independence.

AI Sequential Learning: A Secure Approach to Wireless AI Integration

Instead of sharing their internal AI models, companies exchange training datasets containing input/output pairs. This allows each vendor to:

  • Train AI models using real-world network conditions.
  • Develop interoperable AI components that can seamlessly work together.
  • Maintain control over proprietary technology.

This approach was tested in two ways:

  1. Device Encoder-First Approach (MWC 2024)

    • Qualcomm developed an encoder model and provided a dataset to Nokia.
    • Nokia then built an interoperable decoder using this dataset.
  2. Network Decoder-First Approach (MWC 2025)

    • Nokia designed a decoder model and shared a dataset with Qualcomm.
    • Qualcomm then created an interoperable encoder.

Both methods achieved similar performance, proving that AI interoperability is scalable and can be adapted to different deployment needs.

AI Performance in Wireless Networks: Real-World Testing Results

Diverse Deployment Scenarios

For AI-driven wireless networks to be effective, models must function reliably across different physical environments. Qualcomm and Nokia tested their AI-enhanced CSF across three distinct cell sites:

  1. An outdoor suburban location
  2. An industrial warehouse environment
  3. A high-density office setting

These tests helped evaluate how well general AI models compare to hyper-localized models trained for specific environments.

General vs. Hyper-Local AI Models

The findings showed that a single AI model trained on diverse datasets could perform on par with hyper-local models customized for individual locations.

  • When the common AI model was introduced to Indoor Site 2, it adapted with minimal retraining.
  • The model’s performance remained within 1% of the locally trained models.

This result highlights the robustness of general AI models, proving they can adapt to new environments with minimal adjustments.

AI vs. Traditional CSF: How AI-Enhanced Feedback Boosts 5G & 6G

To quantify the benefits of AI-driven CSF, Qualcomm and Nokia compared AI-based feedback with legacy grid-of-beam-based feedback (3GPP Type I).

The results showed:

  • Throughput gains ranging from 15% to 95% depending on user location.
  • Higher signal strength and reduced interference across different environments.
  • More efficient spectrum utilization, leading to lower network congestion.

This means AI-enhanced CSF could significantly improve network performance in real-world 5G deployments and beyond.

AI’s Role in 5G & 6G: The Future of Wireless Network Automation

The successful demonstration of multi-vendor AI models has significant implications for 5G evolution and the future 6G era.

Key Benefits of AI-Enhanced Wireless Networks

  1. Higher Network Capacity

    • AI-driven feedback enables better spectrum efficiency, allowing more users to connect with faster speeds.
  2. Improved Reliability and Adaptability

    • AI models dynamically adjust to changing network conditions, ensuring consistent quality of service (QoS).
  3. Energy Efficiency and Sustainability

    • Smarter beamforming reduces energy waste, contributing to green networks and sustainability efforts.
  4. Standardization and Multi-Vendor Collaboration

    • As 3GPP explores AI-based CSF integration, multi-vendor interoperability will be critical for global standardization.

The Future of AI in Wireless: Scaling AI Across 5G & 6G

The Qualcomm-Nokia Bell Labs collaboration represents a major step forward in integrating AI into wireless communications. Their work demonstrates that AI models can:

  • Be trained and deployed across different vendors without compromising proprietary technology.
  • Improve network intelligence, reliability, and energy efficiency.
  • Scale across 5G, 6G, and beyond.

Expanding AI Deployment in Wireless Networks

Moving forward, AI-enhanced CSF could be integrated into:

  • Private 5G networks for enterprise applications like smart factories, logistics, and automation.
  • Next-generation Open RAN architectures, where AI-driven models can enhance radio access network (RAN) performance.
  • 6G research, where AI-native designs will play a key role in enabling self-optimizing networks.

AI-Driven Wireless Networks: The Next Evolution in Connectivity

The results of this multi-vendor AI collaboration prove that AI-driven wireless networks are no longer theoretical—they are becoming reality.

By combining AI, private 5G, and edge computing, Qualcomm and Nokia Bell Labs are leading the way in intelligent network automation.

This breakthrough sets the stage for a more efficient, adaptive, and scalable wireless ecosystem, bringing us one step closer to AI-powered connectivity for the future.


Recent Content

BT’s global fabric redefines telecoms by collapsing legacy silos into a fully digital, AI-ready network. With virtualization, cloud agility, and NaaS, BT supports critical infrastructure at global scale while tackling data sovereignty, resilience, and modern skills challenges.
Tampnet has rolled out the world’s first fully autonomous private 5G network with Edge Compute offshore for Aker BP’s Edvard Grieg platform. This digital backbone provides real-time data processing, robust wireless coverage, and supports advanced offshore operations like autonomous drones, robotics, and predictive maintenance, setting a new standard for offshore oil and gas connectivity.
Ericsson has overhauled its Enterprise Wireless Solutions Partner Program, introducing a flexible structure that boosts deal registration benefits, streamlines partner tiers, expands the Mountaineer Program for technical and sales enablement, and adds the Partner View tool for clear performance tracking.
India’s Department of Telecommunications (DoT) has relaunched its plan to directly allocate spectrum for private 5G networks. The new demand study invites large enterprises and system integrators to signal interest in dedicated spectrum for captive 5G setups. If approved, this policy could enable Indian industries to run secure, high-speed networks without fully relying on telecom operators.
GFiber Labs and Nokia are partnering to shape the future of home internet with network slicing. Network Slicing lets customers customize bandwidth for gaming, work, and secure tasks. GFiber’s successful demo with Nokia shows how slices can create smoother gameplay, better video calls, and safer online banking – all while putting real-time control in users’ hands.
Digital Catapult, a deep tech innovation organisation, has today announced its accreditation as the only European Open Testing and Integration Centre (OTIC) in the UK awarded by the O-RAN ALLIANCE. The accreditation recognises Digital Catapult’s world-class capabilities in testing, validating and integrating open and interoperable radio access network (Open RAN) technologies, and its aim to advance the development and deployment of open and future networks.  

Currently, no free downloads are available for related categories. Search similar content to download:

  • Reset

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025