Private Network Check Readiness - TeckNexus Solutions

NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout

NVIDIA has launched a major U.S. manufacturing expansion for its next-gen AI infrastructure. Blackwell chips will now be produced at TSMC’s Arizona facilities, with AI supercomputers assembled in Texas by Foxconn and Wistron. Backed by partners like Amkor and SPIL, NVIDIA is localizing its AI supply chain from silicon to system integration—laying the foundation for “AI factories” powered by robotics, Omniverse digital twins, and real-time automation. By 2029, NVIDIA aims to manufacture up to $500B in AI infrastructure domestically.
NVIDIA Expands U.S. AI Chip and Supercomputer Manufacturing with Blackwell Rollout
Image Credit: Nvidia

NVIDIA Builds Domestic AI Infrastructure with TSMC, Foxconn, and Wistron

NVIDIA has officially announced a major expansion of its AI infrastructure footprint—this time on U.S. soil. For the first time in the company’s history, NVIDIA will manufacture its AI supercomputers and next-generation semiconductors entirely within the United States.


In collaboration with manufacturing giants TSMC, Foxconn, and Wistron, NVIDIA is establishing over one million square feet of dedicated production capacity in Arizona and Texas. This move supports not just chip manufacturing but the entire lifecycle of AI supercomputer development—from silicon fabrication and testing to packaging and system integration.

The initiative signals a fundamental shift in the AI supply chain and reflects growing pressure for technological sovereignty, supply chain resilience, and the onshoring of strategic infrastructure.

NVIDIA Blackwell AI Chips Begin Production in Arizona with Full Supercomputer Builds in Texas

NVIDIA’s new Blackwell chipsets—tailored for AI model training and inference—have officially entered production at TSMC’s advanced node facilities in Phoenix, Arizona. These chips are at the heart of NVIDIA’s next-generation computing systems, designed to handle the computational demands of modern large language models (LLMs) and Generative AI.

Down the supply chain, two major supercomputer manufacturing sites are being launched: one in Houston, operated by Foxconn, and another in Dallas, operated by Wistron. These factories will assemble, test, and integrate the full AI computing platforms powered by the Blackwell architecture.

Mass production is expected to scale significantly over the next 12–15 months, with NVIDIA signaling that these plants will play a pivotal role in meeting global demand for AI processing power.

Building a Domestic AI Supply Chain—From Silicon to System Integration

NVIDIA is addressing more than just chip production. The entire value chain—from chip packaging to end-to-end testing—is being localized. The company is partnering with Amkor and SPIL in Arizona for backend manufacturing processes, which are typically outsourced to Asia. These partnerships support the packaging of advanced chipsets and ensure seamless integration into full-stack AI supercomputers.

By 2029, NVIDIA aims to manufacture up to $500 billion worth of AI infrastructure in the U.S., a bold strategy that emphasizes economic impact alongside technical advancement. It also showcases a commitment to national priorities such as supply chain independence, high-tech job creation, and domestic innovation.

NVIDIA’s AI Factories Signal a Shift in Global Tech Infrastructure

NVIDIA describes these new manufacturing sites as “AI factories”—data center-grade facilities built solely for AI workloads. Unlike traditional compute environments, these factories are optimized for real-time data processing, model training, inference, and advanced analytics.

Tens of such gigawatt-scale AI factories are expected to be built in the coming years to support use cases across sectors like healthcare, financial services, automotive, and telecom.

These facilities will be vital for delivering high-throughput AI capabilities to power applications like digital twins, autonomous systems, virtual assistants, and generative AI tools.

NVIDIA Uses Omniverse and Robotics to Power Smart AI Factories

To streamline operations, NVIDIA plans to use its own technology stack to design and run these factories. Using the NVIDIA Omniverse, the company will build high-fidelity digital twins of its production facilities to simulate workflows, test equipment placement, and optimize throughput before physical deployment.

Additionally, NVIDIA Isaac GR00T, the company’s robotics platform, will automate large portions of the manufacturing process. These smart robots will handle component assembly, automated inspection, and logistics, reducing error margins and increasing productivity across sites.

This integration of AI, robotics, and automation signals a new standard in factory operations, merging digital infrastructure with physical manufacturing in real time.

U.S. AI Manufacturing Expansion Fuels Jobs and Global Tech Leadership

NVIDIA’s U.S.-based production is expected to generate hundreds of thousands of jobs, from factory technicians to software engineers. It also strengthens the U.S. position in the global race to dominate AI, semiconductors, and advanced computing.

According to Jensen Huang, Founder and CEO of NVIDIA, “The engines of the world’s AI infrastructure are being built in the United States for the first time. Adding American manufacturing helps us better meet the incredible and growing demand for AI chips and supercomputers, strengthens our supply chain, and boosts our resiliency.”

A Strategic Move That Sets the Tone for the AI-First Economy

NVIDIA’s announcement isn’t just about moving manufacturing closer to home—it’s a signal to the broader tech ecosystem. As AI becomes foundational to everything from drug discovery and cybersecurity to smart cities and self-driving vehicles, companies will need more localized, secure, and scalable AI infrastructure.

By integrating semiconductor manufacturing with edge computing, digital twins, and AI software frameworks under one national footprint, NVIDIA is building a comprehensive blueprint for the AI-powered future.


Recent Content

Vantage will invest more than $25 billion to build Frontier, a 1,200-acre, 10-building campus totaling roughly 3.7 million square feet near Abilene, about 120 miles west of Dallas Fort Worth. The site is designed for ultra-high-density racks of 250kW and above, paired with liquid cooling for next-generation GPU systems. Construction has started, with first delivery targeted for the second half of 2026. Vantage expects more than 5,000 jobs through construction and operations. This is the company’s largest project to date and underscores its acceleration beyond a global footprint of 36 campuses delivering nearly 2.9GW of critical IT load. Vantage is a portfolio company of Digital Bridge Group.
AI buildouts and multi-cloud scale are stressing data center interconnect, making high-capacity, on-demand metro connectivity a priority for enterprises. Training pipelines, retrieval-augmented generation, and model distribution are shifting traffic patterns from north-south to high-volume east-west across metro clusters of data centers and cloud on-ramps. This is the backdrop for Lumen Technologies push to deliver up to 400Gbps Ethernet and IP Services in more than 70 third-party, cloud on-ramp ready facilities across 16 U.S. metro markets. The draw is operational agility: bandwidth provisioning in minutes, scaling up to 400Gbps per service, and consumption-based pricing that aligns spend with variable AI and data movement spikes.
SoftBank will invest $2 billion in Intel, taking roughly a 2% stake at $23 per share and becoming one of Intels largest shareholders. It is a financial vote of confidence in a company trying to reestablish process leadership, scale a foundry business, and convince marquee customers to commit to external wafer orders. SoftBank has been assembling an AI supply-chain franchise that spans IP, compute, and infrastructure. It owns Arm, agreed to acquire Arm server CPU designer Ampere Computing, injected massive capital into OpenAI, and aligned with Oracle under the Stargate hyperscale AI initiative backed by the current U.S. administration.
Vodafone Idea (Vi) and IBM are launching an AI Innovation Hub to infuse AI and automation into Vis IT and operations, aiming to boost reliability, speed delivery, and improve customer experience in Indias fast-evolving 5G market. IBM Consulting will work with Vi to co-create AI solutions, digital accelerators, and automation tooling that modernize IT service delivery and streamline business processes. The initiative illustrates how AI and automation can reshape telco IT and managed services while laying groundwork for 5G-era revenue streams. Unified DevOps across OSS/BSS enables faster rollout of plans, bundles, and digital journeys.
Chesapeake, Virginia, in partnership with Boldyn Networks, has launched Chesapeake Connects, a city-owned private LTE and IoT network aimed at transforming public services, improving digital equity, and reducing reliance on commercial carriers. The hybrid system leverages CBRS for Fixed Wireless Access and LoRaWAN for citywide IoT, supporting smart city infrastructure like flood sensors, smart traffic lights, and more.
The 4.44.94 GHz range offers the cleanest mix of technical performance, policy feasibility, and global alignment to move the U.S. ahead in 6G. Midband is where 6G will scale, and 4 GHz sits in the sweet spot. A contiguous 500 MHz block supports wide channels (100 MHz+), strong uplink, and macro coverage comparable to C-Band, but with more spectrum headroom. That translates into better spectral efficiency and a lower total cost per bit for nationwide deployments while still enabling dense enterprise and edge use cases.
Whitepaper
As VoLTE becomes the standard for voice communication, its rapid deployment exposes telecom networks to new security risks, especially in roaming scenarios. SecurityGen’s research uncovers key vulnerabilities like unauthorized access to IMS, SIP protocol threats, and lack of encryption. Learn how to strengthen VoLTE security with proactive measures such as...
Whitepaper
Dive into the comprehensive analysis of GTPu within 5G networks in our whitepaper, offering insights into its operational mechanics, strategic importance, and adaptation to the evolving landscape of cellular technologies....

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Private Network Awards 2025 - TeckNexus
Scroll to Top

Private Network Awards

Recognizing excellence in 5G, LTE, CBRS, and connected industries. Nominate your project and gain industry-wide recognition.
Early Bird Deadline: Sept 5, 2025 | Final Deadline: Sept 30, 2025