AMD and Rapt AI Partner to Optimize GPU Utilization for AI Workloads

AMD and Rapt AI are partnering to improve AI workload efficiency across AMD Instinct GPUs, including MI300X and MI350. By integrating Rapt AI's intelligent workload automation tools, the collaboration aims to optimize GPU performance, reduce costs, and streamline AI training and inference deployment. This partnership positions AMD as a stronger competitor to Nvidia in the high-performance AI GPU market while offering businesses better scalability and resource utilization.
Observe.AI Launches VoiceAI for Call Center Automation

Advanced Micro Devices Inc. (AMD) is enhancing the way businesses handle AI workloads through a strategic partnership with Rapt AI Inc. This collaboration focuses on improving the efficiency of AI operations on AMDs Instinct series graphics processing units (GPUs), a move that promises to bolster AI training and inference tasks across various industries.

How Rapt AI Enhances AMD Instinct GPU Performance for AI Workloads


Rapt AI introduces an AI-driven platform that automates workload management on high-performance GPUs. The partnership with AMD is aimed at optimizing GPU performance and scalability, which is essential for deploying AI applications more efficiently and at a reduced cost.

Managing large GPU clusters is a significant challenge for enterprises due to the complexity of AI workloads. Effective resource allocation is essential to avoid performance bottlenecks and ensure seamless operation of AI systems. Rapt AI’s solution intelligently manages and optimizes the use of AMD’s Instinct GPUs, including the MI300X, MI325X, and the upcoming MI350 models. These GPUs are positioned as competitors to Nvidias renowned H100, H200, and “Blackwell” AI accelerators.

Maximizing AI ROI: Lower Costs and Better GPU Usage with Rapt AI

The use of Rapt AIs automation tools allows businesses to maximize the performance of their AMD GPU investments. The software optimizes GPU resource utilization, which reduces the total cost of ownership for AI applications. Additionally, it simplifies the deployment of AI frameworks in both on-premise and cloud environments.

Rapt AI’s software reduces the time needed for testing and configuring different infrastructure setups. It automatically determines the most efficient workload distribution, even across diverse GPU clusters. This capability not only improves inference and training performance but also enhances the scalability of AI deployments, facilitating efficient auto-scaling based on application demands.

Future-Proof AI Infrastructure: Integration of Rapt AI with AMD GPUs

The integration of Rapt AIs software with AMDs Instinct GPUs is designed to provide seamless, immediate enhancements in performance. AMD and Rapt AI are committed to continuing their collaboration to explore further improvements in areas such as GPU scheduling and memory utilization.

Charlie Leeming, CEO of Rapt AI, shared his excitement about the partnership, highlighting the expected improvements in performance, cost-efficiency, and reduced time-to-value for customers utilizing this integrated approach.

The Broader Impact of the AMD and Rapt AI Partnership

This collaboration between AMD and Rapt AI is setting new benchmarks in AI infrastructure management. By optimizing GPU utilization and automating workload management, the partnership effectively addresses the challenges enterprises face in scaling and managing AI applications. This initiative not only promises improved performance and cost savings but also streamlines the deployment and scalability of AI technologies across different sectors.

As AI technology becomes increasingly integrated into business processes, the need for robust, efficient, and cost-effective AI infrastructure becomes more critical. AMDs strategic partnership with Rapt AI underscores the company’s commitment to delivering advanced solutions that meet the evolving needs of modern enterprises in maximizing the potential of AI technologies.

This collaboration will likely influence future trends in GPU utilization and AI application management, positioning AMD and Rapt AI at the forefront of technological advancements in AI infrastructure. As the partnership evolves, it will continue to drive innovations that cater to the dynamic demands of global industries looking to leverage AI for competitive advantage.

The synergy between AMDs hardware expertise and Rapt AIs innovative software solutions paves the way for transformative changes in how AI applications are deployed and managed, ensuring businesses can achieve greater efficiency and better results from their AI initiatives.


Recent Content

Connectivity convergence is redefining the Internet of Things by integrating legacy systems, cellular, Wi-Fi, LoRaWAN, BLE, and satellite networks. From agriculture to logistics, IoT ecosystems are evolving to prioritize seamless communication, modular hardware, and intelligent data handling with edge AI. This article explores how convergence is shifting the focus from hype to practical, scalable deployment—unlocking the true potential of IoT everywhere.
This articles explores how AI, quantum computing, and next-gen connectivity are shaping the future of innovation. From ethical AI and quantum-safe cryptography to 6G-enabled access to education and healthcare, these converging technologies are redefining what’s possible across industries. The key: inclusive, sustainable, and collaborative development.
With AI shifting from the cloud to the device, on-device AI is transforming privacy, speed, and user experience. Experts from Honor, Broadcom, and Orange explore the challenges and innovations shaping this future, from AI chips to offline capabilities and ethical implications. Is it time to go all-in?
Smartphones are no longer just communication tools—they’re data hubs, wallets, and identity carriers. As mobile usage expands, so do digital threats. This article explores why the future of mobile protection must go beyond physical coverage to include AI-powered threat detection, data security, and digital identity safeguards.
Telecom Communication Service Providers (CSPs) are embracing a digital-first strategy to remain competitive in a rapidly evolving industry. This article outlines how CSPs are integrating AI for operational efficiency, shifting towards personalized customer experiences, building scalable monetization strategies, and overcoming legacy challenges to drive long-term digital transformation and enterprise value.
Nvidia GTC 2025 introduced AI advancements, including Blackwell Ultra AI chips, agentic AI, and AI Factories. With innovations in robotics, generative AI, and AI-driven cloud computing, Nvidia is shaping the future of AI-powered industries. Discover how these technologies are transforming healthcare, finance, automotive, and enterprise applications.
Whitepaper
Download the 5G Assurance Operator Survey conducted on behalf of RADCOM by TeckNexus. Get the viewpoint from the 5G operators' operational team....
Radcom Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top