Merseburg University Launches 5G Campus Network with Deutsche Telekom

Merseburg University of Applied Sciences, in collaboration with Deutsche Telekom, has introduced the region's first 5G campus network. This high-performance, low-latency network supports advanced research in areas like autonomous driving, logistics, and AR. With exclusive access to industrial frequencies and 5G technology, the university is at the forefront of digital innovation in Saxony-Anhalt, driving regional transformation and fostering academic-industry collaboration.
Merseburg University Launches 5G Campus Network with Deutsche Telekom
Image Credit: Merseburg University and Deutsche Telekom

In collaboration with Deutsche Telekom, Merseburg University of Applied Sciences has launched the first 5G campus network in the region. This network aims to foster innovation, research, and the development of advanced digital technologies in the region. The project is part of Saxony-Anhalt’s broader investment strategy to boost digital infrastructure and drive regional structural transformation.

Overcoming Digital Infrastructure Challenges in Saxony-Anhalt


The region around Merseburg is undergoing significant economic and industrial changes. To support this transition, state-of-the-art digital infrastructure is necessary. Traditional mobile networks are not equipped to handle the specific demands of modern research institutions and industries. Low latency, high-speed data transmission, and secure communication are vital for innovation in fields like autonomous driving, logistics, and augmented reality (AR).

How Deutsche Telekom’s Private 5G Network Powers Innovation at Merseburg University

Deutsche Telekom, using 5G standalone (SA) technology, provided a custom 5G private network for the university. A total of 44 antennas were installed—32 indoor antennas for the Merseburg Innovation and Technology Center (MITZ) and 12 for the university, along with five outdoor antennas. The system utilizes industrial frequencies in the 3.7 to 3.8 GHz range, reserved exclusively for the university, ensuring secure and reliable service.

Real-World Applications: 5G Drone Demonstration at Merseburg Digital Days

The deployment of the 5G network at Merseburg University is not just theoretical. During the Merseburg Digital Days, attendees witnessed a live demonstration of a 5G-enabled drone operating within the network. This successful field test showed the network’s capacity for real-time, low-latency applications. Additionally, indoor 5G positioning technology was used for the first time in MITZ, enabling real-time location tracking of materials, essential for optimizing production and logistics processes.

Why Merseburg University Chose 5G Standalone for Its Campus Network

Merseburg University opted for Deutsche Telekom’s “Campus-Netz Private” solution, which is built on 5G standalone architecture. This technology offers significant advantages, including ultra-low latency and the ability to process data directly on-site, ensuring high security and performance. Ericsson’s solutions were integral to the network infrastructure, particularly for positioning technology, a first for indoor applications.

Key Advantages of Merseburg University’s Private 5G Network for Research and Industry

The private 5G network at Merseburg University provides many advantages:

  • High security: All data traffic stays within the local network, ensuring data integrity.
  • Maximum performance: The network is optimized for high-speed data and ultra-low latency.
  • Exclusive access: The university and MITZ benefit from industrial-grade frequencies, providing up to 100 MHz of bandwidth for research and commercial applications.

How Merseburg’s 5G Campus Network is Shaping the Future of Regional Innovation

The launch of this network positions Merseburg University as a hub for 5G research and innovation. It enables experiments in autonomous driving, real-time logistics, and even healthcare applications, all of which require the advanced capabilities of 5G technology. Moreover, it encourages collaboration between academia and industry, as local businesses can test and refine 5G applications.

Deutsche Telekom’s Role in Deploying Merseburg University’s 5G Network

Deutsche Telekom played a crucial role in the design and implementation of this 5G private network. As a trusted telecom leader, they provided the necessary infrastructure and technological expertise. Their involvement extended from network installation to live demonstrations and ongoing support, ensuring that the network operates at its best.

Ericsson’s Cutting-Edge Positioning Technology Boosts Merseburg’s 5G Capabilities

Ericsson, as a key technology partner, contributed its state-of-the-art positioning solution, which is critical for the efficiency of industrial applications such as warehouse management and production line optimization. Their solution is based on the latest 3GPP standards, ensuring the university has access to cutting-edge technology.

Merseburg University’s 5G Campus Network Now Fully Operational

The network is fully operational, with both the university and MITZ already using it for various research projects. The initial phase of deployment is complete, and further optimizations and use cases are expected as part of the university’s “MerInnoCampus” development strategy. The Merseburg Digital Days showcased the network’s potential and highlighted its impact on regional innovation.

The project started with a Europe-wide tender, and Deutsche Telekom was selected as the winning bidder. The network construction took several months, with the official launch happening during the 2023 Merseburg Digital Days. The 5G network is set to operate over a seven-year period, with ongoing updates and improvements as necessary.

Ministerial Support for Merseburg’s 5G Network and Its Regional Impact

Minister Dr. Lydia Hüskens, speaking at the launch event, emphasized that 5G will play a pivotal role in driving structural change in the region. She highlighted the network’s potential to attract businesses, improve quality of life, and support research and development. Additionally, Linus Schade, representing Deutsche Telekom, noted that this project builds on the company’s previous 5G successes in Merseburg, including the first-ever 5G phone call on their network.

The 5G campus network at Merseburg University represents a significant step forward for digital innovation in Saxony-Anhalt. By providing a secure and high-performance platform, it lays the foundation for future technological advancements and industry collaboration.


Recent Content

Verizon Business and Nokia will deploy six private 5G networks across Thames Freeport’s major logistics sites, including the Port of Tilbury, London Gateway, and Ford Dagenham to create a high-performance digital infrastructure supporting real-time logistics, AI automation, and edge computing. With plans to generate 5,000 skilled jobs and power sustainable trade, this initiative positions Thames Freeport as a next-gen smart trade corridor.
Hrvatski Telekom’s NextGen 5G Airports project will deploy Private 5G Networks at Zagreb, Zadar, and Pula Airports to boost safety, efficiency, and airport automation. By combining 5G Standalone, Edge Computing, AI, and IoT, the initiative enables drones, smart cameras, and AI tablets to digitize inspections, secure perimeters, and streamline operations, redefining aviation connectivity in Croatia.
Edge AI is reshaping broadband customer experience by powering smart routers, proactive troubleshooting, conversational AI, and personalized Wi-Fi management. Learn how leading ISPs like Comcast and Charter use edge computing to boost reliability, security, and customer satisfaction.
The emergence of 6G networks marks a paradigm shift in the way wireless systems are conceived and managed. Unlike its predecessors, 6G will embed Artificial Intelligence (AI) as a native capability across all network layers, enabling real-time adaptability, intelligent orchestration, and autonomous decision-making. This paper explores the symbiosis between AI and 6G, highlighting key applications such as predictive analytics, alarm correlation, and edge-native intelligence. Detailed insights into AI model selection and architecture are provided to bridge the current technical gap. Finally, the cultural and organizational changes required to realize AI-driven 6G networks are discussed. A graphical abstract is suggested to visually summarize the proposed architecture.
Telecom engineers know OSS systems aren’t broken—they just pretend to work. Outdated data, broken integrations, and overwhelming alerts create false confidence and slow operations. Discover how VC4’s Service2Create delivers real-time, trusted inventory and smarter workflows that engineers can actually rely on.
Whitepaper
5G network rollouts are now sprouting around the globe as operators get to grips with the potential of new enterprise applications. Yet behind the scenes, several factors still could strongly impact just how transformative this technology will be in years to come. Ultimately, it will all boil down to one...
NetInsight Logo
Whitepaper
System integrators play a crucial role in the network ecosystem by bringing together various components and technologies from the diverse network ecosystem players to build, deploy, and operate comprehensive end-to-end solutions that meet the specific needs of their clients....
Tech Mahindra Logo

It seems we can't find what you're looking for.

Download Magazine

With Subscription

Subscribe To Our Newsletter

Scroll to Top